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Epileptic encephalopathies comprise a spectrum of disorders
manifesting epilepsy and consequent psychomotor delay.
According to the International League Against Epilepsy
(ILAE), the epileptic activity itself most likely contributes to
the severe cognitive and behavioral impairments, above and
beyond that expected from the underlying pathology alone.1

Many forms of epileptic encephalopathy worsen over time
and are refractory to pharmacotherapy.

Here we provide an overview of the growing field of
epileptic encephalopathies that have no detectable structural
brain lesions or metabolic abnormalities during the neonatal
period, infancy, and childhood. Furthermore, we discuss a
classification based on the clinical phenotype and onset
versus a classification based on the genetic background of
this group of disorders.

The ILAE classification is based primarily on the age of
seizure onset, and it differentiates epileptic encephalopathy
entities that have a specific clinical appearance or a particular
pattern on electroencephalogram (EEG)1:

• Neonatal period
� Early myoclonic encephalopathy
� Ohtahara syndrome

• Infancy
� Epilepsy of infancy with migrating focal seizures
� West syndrome
� Dravet syndrome
� Myoclonic encephalopathy in nonprogressive
disorders

• Childhood
� Epilepsy with myoclonic atonic seizures
� Lennox–Gastaut syndrome
� Epileptic encephalopathy with continuous spike-and-
wave during sleep
� Landau–Kleffner syndrome

Epileptic encephalopathies that have no recognizable EEG
pattern, particular seizure semiology, or additional specific
features are not covered by the current ILAE classification.

Keywords

► epileptic
encephalopathy

► infantile epilepsy
► molecular genetic

testing

Abstract The epileptic encephalopathies comprise a heterogeneous group of neurodevelopmen-
tal disorders characterized by marked epileptic activity associated with developmental
regression. The genetic confirmation and classification of a clinical diagnosis in an
individual may provide certainty in treatment decisions, prognosis, and evaluation of
seizure recurrence risks and may also prevent unnecessary diagnostic investigations.
Furthermore, without genetic testing it is challenging to classify the epileptic encepha-
lopathies based on clinical and electroencephalogram features alone.
The significant gain of knowledge of the past few years associated with improvement in
genetic analyses allows for precise diagnoses in an increasing number of patients. As a
consequence, known encephalopathies have been associated with even broader
phenotypic ranges and novel entities constantly expand the spectrum of these
disorders. Accordingly, many entities of this heterogeneous spectrum escape a precise
classification using current nomenclatures.
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In contrast to the ILAE, Online Mendelian Inheritance in
Man (OMIM; www.ncbi.nlm.nih.gov/omim) does not dis-
criminate between clinical phenotypes, but classifies early-

infantile epileptic encephalopathies exclusively according to
the causative gene. This rapidly growing catalogue lists 30
such phenotypes (by May 2015). Some have so far only been

Table 1 List of the known early infantile epileptic encephalopathy (EIEE) phenotypes according to Online Mendelian Inheritance in
Man (OMIM), their respective causative genes, and the number of mutations listed in the Human Gene Mutation Database (HGMD)

OMIM entity Gene No. of published
mutations in
HGMD (as of May 6,
2015)

Allelic phenotypes (in addition to EIEE)

EIEE1 ARX 69 Hydranencephaly with abnormal genitalia,
X-linked lissencephaly 2,
X-linked mental retardation 29,
Partington syndrome,
Proud syndrome

EIEE2 CDKL5 216 Angelman syndrome-like

EIEE3 SLC25A22 3

EIEE4 STXBP1 79

EIEE5 SPTAN1 10

EIEE6 SCN1A 1098 Dravet syndrome,
Generalized epilepsy with febrile seizures plus type 2,
Familial febrile seizures 3A,
Familial hemiplegic migraine 3

EIEE7 KCNQ2 148 Benign neonatal seizures 1 (BFNS),
Myokymia

EIEE8 ARHGEF9 8

EIEE9 PCDH19 121

EIEE10 PNKP 8

EIEE11 SCN2A 77 Benign familial infantile seizures 3

EIEE12 PLCB1 7

EIEE13 SCN8A 27 Cognitive impairment with or without cerebellar ataxia

EIEE14 KCNT1 15 Nocturnal frontal lobe epilepsy 3

EIEE15 ST3GAL3 3 Autosomal recessive mental retardation 12

EIEE16 TBC1D24 21 DOOR syndrome
Autosomal recessive deafness 86
Familial infantile myoclonic epilepsy

EIEE17 GNAO1 6

EIEE18 SZT2 4

EIEE19 GABRA1 12 Childhood absence epilepsy,
Juvenile myoclonic epilepsy, Dravet syndrome

EIEE20 PIGA 8

EIEE21 NECAP1 1

EIEE22 SLC35A2 8

EIEE23 DOCK7 4

EIEE24 HCN1 7 Idiopathic generalized epilepsy

EIEE25 SLC13A5 4

EIEE26 KCNB1 4

EIEE27 GRIN2B 26 Autism spectrum disorders

EIEE28 WWOX 18

EIEE29 AARS 6

EIEE30 SIK1
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reported as very rare and isolated cases, whereas others
significantly overlap or form part of a continuumwith differ-
ent epileptic encephalopathies.

The allelic phenotypes include both incontrovertible
monogenetic associations such as SCN1A and Dravet syn-
drome and as yet unproven risk alleles for complex pheno-
types such as GABRA1 and juvenile myoclonic epilepsy.

The number of HGMD-listed mutations shows how often
the disorder is diagnosed in the scientific literature. Due to
allelic phenotypes, not all thesemutations are associatedwith
early infantile epileptic encephalopathy; for example, a mi-
nority of SCN1A mutations is associated with GEFSþ or
hemiplegic migraine, and on the contrary, most KCNQ2 and
SCN2A mutations cause benign familial epilepsy disorders—
not early infantile epileptic encephalopathy (►Table 1).

Neonatal Period

Early Myoclonic Encephalopathy

Clinical Description
Early (or neonatal) myoclonic encephalopathy, together with
Ohtahara syndrome, shows a characteristic burst-suppres-
sion pattern on EEG. Phenotypic similarities can make it
difficult to distinguish these disorders, and some authors
consider them as a fluid continuum.2 Aicardi and Goutières
first described early myoclonic encephalopathy in 1978.3 It
usually starts in the first days of life with predominantly
myoclonic seizures. Recurrent familial cases have been attrib-
uted mainly to inherited disorders of metabolism, especially
nonketotic hyperglycinemia, pyridoxine, and pyridoxalphos-
phate-dependent epilepsy, sulfite-oxidase deficiency, and
Menkes disease, as well as brain malformations.4–6 The
seizures are usually described as myoclonic or erratic myoc-

lonus. Although shifting focal myoclonias that affect different
parts of the body, including the face and eyelids, are regarded
as nonepileptic, focal motor seizures occur in more than 80%
of patients and can include autonomic ictal manifestations
and apnea (►Figs. 1 and 2).7,8 A neonatal burst-suppression
pattern may evolve into hypsarrhythmia within the first
months of life. The prognosis is very poor, with severe global
developmental delay and a mortality rate of up to 50% during
the first 2 years of life.2,6,7 Functional cortico-subcortical de-
afferentation from diffuse brain damage involving the brain-
stem and the white matter is regarded as the common
underlying pathology, causing cortical hyperexcitability in
early myoclonic encephalopathy.6,9,10

Genetics
The genetic background of earlymyoclonic encephalopathy is
unclear. There is a single report of a patient carrying a de novo
reciprocal chromosomal translocation with consecutive dis-
ruption of the ERBB4 gene, being putatively involved in
neuromigration.11 Another report associated mutations in
PIGAwith earlymyoclonic encephalopathy and other forms of
epileptic encephalopathy.12

Ohtahara Syndrome or Early Infantile Epileptic
Encephalopathy

Clinical Description
Ohtahara and colleagues first described early infantile epi-
leptic encephalopathy in 1976 as a disorder starting during
the first 3 months of infancy.13 It primarily differs from
epileptic encephalopathy of infantile onset (e.g., West syn-
drome) because of dominating tonic spasms, the variable
seizure types including focal motor seizures, and its specific
EEG pattern (►Fig. 3).14 The cardinal EEG feature of Ohtahara

Fig. 1 Burst-suppression pattern in a patient with early myoclonic encephalopathy due to nonketotic hyperglycinemia. The patient showed
shifting myoclonia, subtle seizures, and myoclonia including repetitive singultus. The burst-suppression pattern is more prominent during sleep.
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Fig. 2 Burst-suppression pattern in a girl with early myoclonic encephalopathy of unclear etiology. She presented with near-constant myoclonus
and increased muscle tone associated with multifocal myoclonia as well as frequent seizure-related apnea. Brain magnetic resonance imaging
showed cerebellar hypoplasia and progressive global atrophy.

Fig. 3 Suppression period, followed by a burst of epileptic discharges that mark the onset of an ictal pattern in a 4-month-old girl with Ohtahara
syndrome. Tonic seizures occurred at age 2 months, followed by multiple, predominantly focal seizure types. Brain magnetic resonance imaging
showed severe brain atrophy during the first year of life. At 7 years old, she is severely impaired and has occasional seizures.
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syndrome is a constant burst-suppression pattern during
wakefulness and sleep.10 Trials with pyridoxine and pyridox-
alphosphate are recommended, and phenobarbital, vigaba-
trin, or adrenocorticotropic hormone are used among others,
but the seizures are usually refractory to pharmacotherapy
and most patients have severely impaired development.
Many patients die within the first months of life; others
may evolve into West and Lennox–Gastaut syndrome during
the course.6,8,14,15 Metabolic causes appear to be rare. Some
patients demonstrate structural brain anomalies onmagnetic
resonance imaging (MRI), such as lissencephaly, hemimega-
lencephaly, or agenesis of the corpus callosum.16

Genetics
There are no published large-scale studies on the mutational
spectrum of Ohtahara syndrome. Thus, our current knowl-
edge is based upon small cohorts or isolated single case
reports (►Table 2).

Epilepsy of Infancy with Migrating Focal Seizures

Clinical Description
Coppola and colleagues first described the rare syndrome of
malignant migrating partial seizures or epilepsy in infancy
(MMPSI) in 1995.25 There are three well-characterized dis-
tinct stages of the disease:

1. Sporadic seizures usually occur within the first 6 months
of life: These are mainly focal with rapid secondary
generalization, often with autonomic features. The EEG
at this early stage shows nonspecific diffuse slowing of
background activity.

2. After a few weeks to months, the second “stormy” phase
follows, with clusters of up to 30 focal polymorphic
seizures per day that are often lateralized with deviation
of the head and eyes as well as tonic and clonic jerks of
extremities. During this phase, the EEG typically shows
focal discharges that are “migrating” between cortical

areas or develop independently in different areas of the
same or opposite hemisphere. In general, seizures are
resistant to therapy. Seizure phenotypes usually correlate
with localization of ictal activity on EEG, thus producing
clinical and electroencephalographic complex multifocal
status epilepticus.

3. In the third period, at ages 2 to 5 years, seizures remit or
occur only occasionally (sometimes triggered by illnesses),
whereas severe developmental impairment becomes
more prominent.25–27

Genetics
Epilepsy of infancy with migrating focal seizures has recently
been associatedwith heterozygousmutations in KCNT1 (in up
to 40% of cases) as well as compound heterozygousmutations
in TBC1D24. Thus, MMPSI is heterogeneous and comprises
both autosomal dominant and recessive entities.27–29 Single
cases have shown mutations in PLCB1, SCN8A, SLC25A22,
SCN2A, and SCN1A, whereas other studies could not confirm
mutations in SCN1A, SCN2A, KCNQ2, and KCNQ3, as well as
CLCN2 as major causes of epilepsy of infancy with migrating
focal seizures.30–33

Infancy

Infantile Spasms and West Syndrome

Clinical Description
Infantile (or epileptic) spasms (ISs) are flexor spasms with
bilateral tonic contractions. They are classified as a distinct
seizure type, defined as unknown if generalized or focal
according to the 2010 classification of the ILAE.1 The term
West syndrome describes the triad of ISs together with a
hypsarrhythmia pattern on EEG and behavioral or mental
regression (►Fig. 4).1,34 In West syndrome, ISs appear in
clusters (with up to 150 spasms) up to 30 times per day,
starting between 3 and 9 months of age, with an incidence of
3 to 5 per 10,000 live births.8,34Hypsarrhythmia is the typical

Table 2 Ohtahara syndrome

Mutation Phenotype

ARX Male patients with additional malformations, such as hypospadias, agenesis of corpus callosum,
lissencephaly,17 progressive microcephaly,16 or choreatic dystonia18

STXBP1 Patients without significant malformations or dysmorphy, but frequently with early-onset movement
disorders. Seizure frequency may sometimes decrease during infancy. Patients with focal cortical
dysplasia may benefit from epilepsy surgery.19

There were mutations in 2 out of 6 (33%) Ohtahara patients and 12 out of 266 (4.5%) of early infantile
epileptic encephalopathy patients.19,20

KCNQ2 No significant malformations or dysmorphy. Seizure frequency may sometimes decrease during
infancy. There were mutations in 19 out of 164 (11,6%) of EIEE patients.21,22

Majority of KCNQ2 mutation carriers do not develop early infantile epileptic encephalopathy, but
develop benign neonatal seizures.

CASK Male patients with microcephaly and pontocerebellar hypoplasia.23

GNAO1 Patients may present with movement disorders including dystonia, chorea, and athetosis.24

Copy number variations Variable phenotypes; usually individual microdeletions
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interictal EEG pattern consisting of chaotic generalized asyn-
chronous high-amplitude slow and sharp waves with inter-
spersed multifocal irregular spikes and polyspikes. Given the
co-occurrence of developmental regression, West syndrome
is the prototypical epileptic encephalopathy, arguing for a
causal relationship between epileptic activity and progressive
psychomotor deterioration. Recent studies in tuberous scle-
rosis complex-relatedWest syndrome provided evidence that
prophylactic treatment of epileptic discharges in EEG before
the onset of epilepsy can help both mental development and
epilepsy outcome.35 Adrenocorticotropic hormone or viga-
batrin are the drugs of choice in West syndrome, controlling
seizures in about two-thirds of patients.8

Genetics
The etiology of West syndrome and IS relate mainly to
structural (e.g., due to tuberous sclerosis complex [TSC],
hypoxic/ischemic encephalopathy, cortical dysgenesis) or
metabolic abnormalities. Only 25% of cases are of unknown
origin.36 In tuberous sclerosis complex—a multi-system or-

gan disease often involving brain anomalies—West syndrome
develops in 30% to 40% of patients; therefore, it is the single
most prevalent genetic cause of West syndrome, accounting
for around 7% of cases.37,38

In the remainder of idiopathic cases, only a minority of
genes have been repeatedly associated with West syndrome
(►Table 3). Additionally, several isolated cases have been
associated with mutations in a plethora of genes: CDKL5,
SLC25A22, SPTAN1, PLCB1, ST3GAL3, HDAC4, and others.39–42

By only regarding clinical aspects (IS) or EEG features (hyp-
sarrhythmia), this spectrum of genes is even wider and will
most likely increase in the near future.

Dravet Syndrome and Severe Myoclonic Epilepsy of
Infancy

Clinical Description
Charlotte Dravet initially described Dravet syndrome (DS) as
severe myoclonic epilepsy of infancy in 1978.45 Dravet syn-
drome manifests in otherwise normal infants aged 3 to

Table 3 West syndrome

Mutation Phenotype

ARX Often associated with brain malformations; see also Ohtahara syndrome

STXBP1 Patients without significant malformations or dysmorphic features.
Mutations were found in 1 out of 65 (2%) of patients withWest syndrome.19 Four out of 6 (67%) STXBP1
mutation carriers developed West syndrome.20

DNM1 Severe psychomotor delay, no speech, muscular hypotonia.
Mutations were found in 5 out of 356 epileptic encephalopathy patients (1.4%). All 5 patients had
infantile spasms, 3 had hypsarrhythmia.42,43

GRIN2B Severe psychomotor delay, no speech, muscular hypotonia44

Copy number variations Variable phenotypes; usually individual microdeletions

Fig. 4 Interictal electroencephalogram (EEG) in a 5-month-old girl with infantile spasms in the context of Aicardi syndrome. The EEG shows
hypsarrhythmia (high-amplitude slow waves with irregular interspersed spikes and polyspikes) with right hemispheric dominance.
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12 months, usually with febrile unilateral clonic or tonic–
clonic seizures and sometimes hemiclonic status epilepticus.
Focal dyscognitive seizures and atypical absences also occur
until 4 years of age. Most children showmyoclonic seizures as
originally described, differentiating between the classic se-
vere myoclonic epilepsy of infancy phenotype and the bor-
derline forms of Dravet syndrome.46,47

Seizures are commonly triggered by fever, infections,
vaccination, hyperthermia, or photic stimulation. Interictal
EEG is usually normal at onset. About 20% to 25% show
generalized spike waves after photic stimulation.48,49 After
3 years of age, most affected children show EEG abnormali-
ties; however, the interictal EEG can retain a normal back-
ground activity and many cases show no epileptiform
activity.8,46,47

In general the brain MRI is normal, though occasionally
there is hippocampal sclerosis or brain atrophy.46,47 Patients
seem to benefit from early antiepileptic treatment, most
often a combination of antiepileptic drugs, including valproic
acid, benzodiazepines, bromide, topiramate, and stiripentol.
However, it is essential to avoid sodium channel blockers,
such as carbamazepine or lamotrigine, as these can worsen
epilepsy and nonepileptic movement disorders.46,47

Vagus nerve stimulation and the ketogenic diet have
recently been shown to be an alternative treatment option
in epileptic encephalopathy including Dravet syndrome with
minimal side effects and increasing quality of life.50 Children
with Dravet syndrome typically showa slight delay inwalking
and clumsiness; the gait often becomes ataxic and some
develop a spastic-like crouch pattern later in life.51 The
seizures typically persist and intellectual outcome is
unfavorable.47

Genetics
Dravet syndrome is caused by mutations in SCN1A in at least
75% of cases.52 Several other genes have been associated with
Dravet or Dravet-like phenotypes, such as PCDH19 (females
only)53 or less frequent in SCN1B, SCN2A, and GABRG2. More
recently, mutations in GABRA1 and STXBP1 have been associ-
ated with classic Dravet syndrome,54 whereas mutations in
CHD2 have been detected in late-onset cases.55 Mutations in
HCN1 have been found in patients diagnosed with Dravet
syndrome, but presenting with a different progression and a
more severe degree of intellectual deficit.56

Thus, SCN1A-negative Dravet (-like) patients show a high
genetic heterogeneity; it is proposed that the term Dravet
syndrome be reserved for SCN1A mutation carriers only.

Variants in SCN9A have been described as putatively
disease-modifying factors in addition to mutations in
SCN1A.57 However, this and other putative modifiers remain
to be replicated in large cohorts. Because the quality and
sensitivity of molecular genetic diagnostics have significant-
ly improved in the last decade, it may be reasonable to
question “old” negative SCN1A results in patients with classic
Dravet syndrome. Several false-negative findings have been
reported recently due to improvement of sequencing
techniques.58

Childhood and School Age

Lennox–Gastaut Syndrome

Clinical Description
The description of a severe childhood epilepsy and its electro-
encephalographic features described by Lennox and Davis in
1950 and by Gastaut et al in 1966 led to the definition of
Lennox–Gastaut syndrome as part of the epileptic encepha-
lopathies in childhood.59,60 The diagnostic criteria of typical
Lennox–Gastaut syndrome consist of

1. Multiple epileptic seizures including axial tonic, atonic,
and atypical absence seizures

2. Electroencephalogram abnormalitieswith frontally accen-
tuated bursts of slow spike-waves during wakefulness and
bursts of fast rhythmic activity during sleep

3. A slowness in intellectual growth and associated person-
ality disorders8,61

The age at onset is 3 to 6 years. Lennox–Gastaut syndrome
may be preceded by nonepileptic and/or epileptic encepha-
lopathy, such as Ohtahara or West syndrome. Drop attacks
from axial tonic or (myoclonic-) atonic seizures are among the
predominating seizure types together with atypical absence
seizures and nonconvulsive status epilepticus.8,61 Nearly all
patients have severe intellectual disability and refractory
epilepsy. In addition, there may be significant overlap with
other epileptic encephalopathies, such as Dravet syndrome,
epilepsy with myoclonic-atonic seizures, Angelman syn-
drome, and others.

As pharmacoresistance is a predominant feature of Len-
nox–Gastaut syndrome, a combination of several antiepilep-
tic drugs is usually inevitable with valproic acid, lamotrigine,
topiramate, and benzodiazepines being of value, as well as
rufinamide (and the cautiously used felbamate) are frequent-
ly prescribed drugs.61 The literature about pharmacotherapy
in Lennox–Gastaut syndrome seems to reflect more the
innovations of the antiepileptics than a formal therapeutic
approach, and it is still debatable whether to reduce or
increase the antiepileptic medications in affected individuals
with refractory seizures.8

Genetics
The etiology of Lennox–Gastaut syndrome comprises a broad
range of structural, metabolic, and primarily monogenetic
pathologies, as well as tumor, infection, trauma, and intoxi-
cation. However, both structural malformations (e.g., cortical
dysgenesis, neuronal migration disorders) and metabolic
disorders (including mitochondriopathies) may similarly
have been caused by monogenetic defects.

Genes that have been repeatedly associated with Lennox–
Gastaut syndrome comprise SCN1A, GABRB3, CHD2, and
DNM1.42,43,62 Single Lennox–Gastaut syndrome cases have
also been reported to show mutations in MAPK10, ALG13,
SCN2A, SCN8A, RYR3, and ST3GAL3. Some of those genes have
been associated with West syndrome too, reflecting its
transition into Lennox–Gastaut syndrome.
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Epilepsy with Myoclonic–Atonic Seizures (Doose
Syndrome, MAE)

Clinical Description
Epilepsy with myoclonic–atonic seizures is a generalized
epilepsy and belongs to the myoclonic epilepsies of child-
hood.1 It was first described by Kruse (1968) and Doose
(1970) and occurs with an explosive onset in otherwise
healthy children with a male predominance.63,64 Myoclonic
seizures that can be subtle and difficult to recognize followed
by an atonic, postmyoclonic phase are the hallmark of the
syndrome, leading to typical drop attacks or head-nodding
attacks. Patients also display generalized tonic–clonic, tonic,
and atypical absence seizures (►Fig. 5). The onset is usually
around age 1 to 5 years.65 The seizures are often difficult to
treat, and besides valproic acid and ethosuximide, ketogenic
diet has shown to help in epilepsy with myoclonic–atonic
seizures. The seizure outcome is very good, with 90% of
patients becoming seizure free within 3 years. The cognitive
outcome is highly variable, with up to 40% developing mild to
severe intellectual disability.65

Genetics
Little is known on the etiology of epilepsy with myoclonic–
atonic seizures. Fourteen to 32% of affected children have a
family history of idiopathic epilepsy.66 A few children resem-
bling epilepsy with myoclonic–atonic seizures belong to large

GEFSþ families carrying SCN1B missense mutations.67 Other
cases may carry mutations in SLC2A1.68 A recent study
identified six individuals carrying de novo mutations in
SLC6A1 among 160 MAE patients (4%).69 Additionally, one
out of 39 MAE patients (2.5%) was found to carry a de novo
mutation in KCNA2.70

Epileptic Encephalopathy with Continuous Spike-and-
Wave during Sleep and Landau–Kleffner Syndrome

Clinical Description
This is a disorder with intellectual disability and language
deficits associated with a subclinical EEG pattern during
sleep, first described by Patry et al in 1971, and referred to
“epileptic encephalopathy with continuous spike-and-wave
during sleep” by Tassinari et al in 1977.71–73 Together with
the acquired epileptic aphasia / Landau–Kleffner syndrome,
continuous spike-and-wave during sleep is recognized as an
electroclinical syndrome by the ILAE.1 Both syndromes share
the main features of marked sleep activation of mainly focal
epileptic discharges into a continuous or near-continuous
spike-and-wave pattern together with a regression in differ-
ent aspects of development.8 The degree of bioelectrical
status during sleep remains a controversial topic. The diag-
nosis is considered in patients with (1) spike-and-wave
pattern occupyingmore than 85% of nonrapid eye-movement
sleep for more than a month, or (2) a significant increase of

Fig. 5 Electroencephalogram (EEG) of a 4-year-old girl with idiopathic epilepsy with myoclonic–atonic seizures displaying slowing of background
activity and typical generalized spikes and polyspikes. Polyspikes are the EEG correlate of myoclonic seizures while the following slow wave
correlates with the atonic component.
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EEG abnormalities during sleep associated with intellectual
and behavioral impairment, as well as language deficits and
transient motor impairment (►Fig. 6).8,72,73

Continuous spike-and-wave during sleep and Landau–
Kleffner syndrome belong to the spectrum of genetic focal
epilepsies of childhood with overlap to benign epilepsy
with centrotemporal (rolandic) spikes.74 One-third to one-
half of children with continuous spike-and-wave during
sleep have neurologic abnormalities before disease onset,
with mainly pre- or perinatally acquired brain le-
sions.8,72,73 In the other half, genetic factors most likely
contribute to the phenotype. Landau–Kleffner syndrome
occurs in previously healthy children aged 2 to 8 years. Half
of affected children develop seizures as the first symptom
of disease; the other half show exclusively progressive
linguistic disturbances that commonly start with an inabil-

ity to understand spoken words that evolves into sensory
and expressive aphasia (►Fig. 7).

Seizures are infrequent in continuous spike-and-wave
during sleep and Landau–Kleffner syndrome. This is particu-
larly so in continuous spike-and-wave during sleep, where
they can occur before and after diagnosis with mainly noc-
turnal focal seizures but also generalized tonic–clonic and
absence seizures. Treatment options include all classical
antiepileptic medications; however, most authors suggest
trying sulthiame, benzodiazepines alone, or combined with
valproic acid and corticosteroids.73 The continuous spike-
and-wave during sleep pattern and seizures usually remit in
puberty. Simultaneously, neuropsychological function may
improve; residual impairment correlates with the length of
continuous spike-and-wave during sleep and early age at
diagnosis.8,72

Fig. 6 Electroencephalogram during wakefulness (A) and sleep in a 7-year-old boy, initially referred for attention-deficit-hyperactivity disorder. Multifocal
singular sharp waves (A) are markedly activated during sleep into a pattern of near-continuous spike-and-wave activity (B). Despite several treatment trials
including sulthiame, levetiracetam, oxcarbazepine, and methylprednisolone, the continuous spike-and-wave during sleep pattern remained. His learning
disabilities became apparent and school performance declined significantly. The genetic diagnosis remains unclear.
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Genetics
Individuals with idiopathic focal epilepsy may also have
relatives with epilepsy. However, the severity and clinical
presentation may vary considerably between affected indi-
viduals, even within the same family. Mutations in GRIN2A, a
gene encoding the NMDA receptor subunit GluN2A has
recently been identified to account for up to 20% of cases
with continuous spike-and-wave during sleep and Landau–
Kleffner syndrome.75–77 Mutation detection rates were
higher in familial compared with isolated cases. In 5 to 10%
of cases with milder epilepsies of the same spectrum, such as
atypical partial epilepsy and benign epilepsy with centro-
temporal spikes, the individual disorder has similarly been
assigned to mutations in GRIN2A.75

Discussion

The ILAE classification is a pragmatic grouping of the hetero-
geneous spectrum of epileptic encephalopathies defined by
clinical and electroclinical characteristics that are “reliably
identified,” but do not reflect the specific etiology.1 There is
no differentiation of channelopathies, synaptopathies, or
epileptic encephalopathies due to structural anomalies,
though this could have significant implications for prognosis
and therapeutic decisions. As an example, seizures in Ohta-
hara syndrome due to STXBP1 or KCNQ2 mutations may
reduce in frequency during infancy, and they may require
other therapeutic strategies when compared with ARX-relat-
ed burst-suppression epilepsy associated with abnormal
gyration. Likewise, the transition from Ohtahara into West

syndrome and fromWest into Lennox–Gastaut syndrome has
been well described in numerous cases. Thus, a patient with
Lennox–Gastaut syndrome may previously have had Ohta-
hara and West syndrome, and may therefore be etiologically
very different from other Lennox–Gastaut syndrome patients
without such history. Hence, without genetic classification of
an epileptic encephalopathy, the prognosis on the individual
course and treatment outcome of the disorder remains
empirical. Furthermore, physicians are often confronted
with patients suffering from less distinct epileptic encepha-
lopathy phenotypes that can barely be assimilated into the
current ILAE schemes.

The phenotypic series of early infantile epileptic encepha-
lopathy according to OMIM represents a quite different way
to group epileptic encephalopathies. In contrast to Ohtahara
et al, OMIM uses the term early infantile epileptic encepha-
lopathy not only for neonatal epilepsy with a specific EEG
pattern and marked developmental delay,13 but for a far
broader spectrum of disorders with onset within the first
year of life (►Table 1).Within this phenotypic series, epilepsy
aspects are barely considered, allowing for a more compre-
hensive delineation of the phenotype (beyond epilepsy)
attributed to a specific gene. As an example, early infantile
epileptic encephalopathy-4 (EIEE4) is caused by mutations in
STXBP1 and may result in (1) Ohtahara syndrome, (2) West
syndrome, (3) Dravet syndrome, (4) severe epilepsy without
distinct EEG features, (5) nonsyndromal intellectual disability
without seizures, and (6) autism spectrum disorders and
others.20,54,78 The OMIM phenotypic series does not include
epileptic encephalopathy phenotypes with onset beyond the

Fig. 7 Continuous spike-and-wave pattern during sleep-onset nonrapid eye-movement sleep in a boy with Landau–Kleffner syndrome. At the age
of 4 years the caregivers observed progressive limitation of speech recognition followed by deterioration of expressive speech. Communication
was finally restricted to manual gestures. After use of sulthiame, levetiracetam, and dexamethasone over 2 years, the continuous spike-and-wave
during sleep pattern resolved and verbal communication resumed. At the age of 14, although his electroencephalogram is normal, he has mild
speech and mental impairment.
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first year of life. Therefore, both the ILAE and the OMIM
classification only depict a narrow spectrum out of the broad
group of epileptic encephalopathies.

An alternative to established classifications might be a
system primarily focusing on genetic aspects and only
secondarily, on phenotypic features. Onset, phenotypic
appearance, and severity would have less importance com-
pared with pathophysiology and its implications on possi-
ble therapeutic aspects as well as prognostic assertions.
Overlap and transition of different phenotypes within one
genetic entity would also be better acknowledged by a
classification primarily considering genetic etiology. More-
over, emphasis on pathophysiology reflects the increasing
importance of personalized therapy in patients with epi-
leptic encephalopathy. Several therapies can help by spe-
cifically targeting individual genetic defects, such as
quinidine in KCNT1 encephalopathy,79,80 retigabine in
KCNQ2 encephalopathy,81 memantine in GRIN2A encepha-
lopathy,82 and the ketogenic diet in SLC2A1-related epilep-
sy. Thus, genetic testing can significantly influence clinics
and therapy of epileptic encephalopathy; it can be expected
that this development will increasingly gain importance in
the years to come.
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