Horm Metab Res 2016; 48(03): 196-200
DOI: 10.1055/s-0035-1549879
Endocrine Research
© Georg Thieme Verlag KG Stuttgart · New York

The Effect of Klotho Treatment on Atherogenesis, Blood Pressure, and Metabolic Parameters in Experimental Rodent Models

Y. Kamari
1   The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel
2   Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
,
O. Fingrut
1   The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel
,
A. Shaish
1   The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel
,
T. Almog
1   The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel
,
M. Kandel-Kfir
1   The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel
,
D. Harats
1   The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel
2   Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
,
T. Rubinek
3   Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
,
I. Wolf
2   Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
3   Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
› Author Affiliations
Further Information

Publication History

received 06 October 2014

accepted 26 March 2015

Publication Date:
07 May 2015 (online)

Abstract

Klotho is a transmembrane protein, expressed mainly in the kidneys and the choroid plexus. The extracellular domain of klotho is composed of 2 internal repeats, KL1 and KL2, which can be cleaved and act as hormones. Klotho-deficient mice develop a phenotype resembling human aging. Laboratory and clinical data suggest a favorable effect of klotho on atherosclerosis, high blood pressure, and metabolic syndrome. Therefore, we aimed to study the effect of klotho treatment on atherogenesis, blood pressure, and metabolic parameters in experimental rodent models. Fructose-fed Sprague-Dawley rats (metabolic syndrome model) and apolipoprotein E (apoE -/-) knock-out mice (atherosclerosis model) were treated with either klotho or its active domain KL1. In apoE –/– mice, klotho unexpectedly elevated plasma cholesterol and triglyceride levels compared to the control group. Yet, it did not increase the aortic sinus atherosclerotic lesion area. In fructose-fed Sprague-Dawley rats, klotho treatment did not lower blood pressure or plasma triglyceride levels. Although KL1 treatment did not lower blood pressure or plasma insulin levels, it significantly reduced the elevation of total plasma triglyceride levels (from 2.3-fold to 1.6-fold, p<0.05) due to lower triglyceride-rich VLDL levels. Klotho did not show any beneficial effects on atherosclerosis and components of the metabolic syndrome and was associated with increased plasma cholesterol levels. On the other hand, treatment with KL1 may lower plasma triglyceride levels independent of insulin. Additional studies are required in order to decipher the complex role of klotho and its active domains in the regulation of plasma lipid levels.

 
  • References

  • 1 Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima Y-i. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997; 390: 45-51
  • 2 Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu M-C, Moe OW, Kuro-o M. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 2006; 281: 6120-6123
  • 3 Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006; 444: 770-774
  • 4 Cha S-K, Ortega B, Kurosu H, Rosenblatt KP, Kuro-o M, Huang C-L. Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci USA 2008; 105: 9805-9810
  • 5 Imura A, Tsuji Y, Murata M, Maeda R, Kubota K, Iwano A, Obuse C, Togashi K, Tominaga M, Kita N, Tomiyama K-i, Iijima J, Nabeshima Y, Fujioka M, Asato R, Tanaka S, Kojima K, Ito J, Nozaki K, Hashimoto N, Ito T, Nishio T, Uchiyama T, Fujimori T, Nabeshima Y-I. {alpha}-Klotho as a regulator of calcium homeostasis. Science 2007; 316: 1615-1618
  • 6 Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H, Shimomura I, Takayama Y, Herz J, Kahn CR, Rosenblatt KP, Kuro-o M. Suppression of aging in mice by the hormone klotho. Science 2005; 309: 1829-1833
  • 7 Ikushima M, Rakugi H, Ishikawa K, Maekawa Y, Yamamoto K, Ohta J, Chihara Y, Kida I, Ogihara T. Anti-apoptotic and anti-senescence effects of Klotho on vascular endothelial cells. Biochem Biophys Res Commun 2006; 339: 827-832
  • 8 Maekawa Y, Ishikawa K, Yasuda O, Oguro R, Hanasaki H, Kida I, Takemura Y, Ohishi M, Katsuya T, Rakugi H. Klotho suppresses TNF-alpha-induced expression of adhesion molecules in the endothelium and attenuates NF-kappaB activation. Endocrine 2009; 35: 341-346
  • 9 Kuwahara N, Sasaki S, Kobara M, Nakata T, Tatsumi T, Irie H, Narumiya H, Hatta T, Takeda K, Matsubara H, Hushiki S. HMG-CoA reductase inhibition improves anti-aging klotho protein expression and arteriosclerosis in rats with chronic inhibition of nitric oxide synthesis. Int J Cardiol 2008; 123: 84-90
  • 10 Arking DE, Atzmon G, Arking A, Barzilai N, Dietz HC. Association between a functional variant of the KLOTHO gene and high-density lipoprotein cholesterol, blood pressure, stroke, and longevity. Circ Res 2005; 96: 412-418
  • 11 Arking DE, Becker DM, Yanek LR, Fallin D, Judge DP, Moy TF, Becker LC, Dietz HC. KLOTHO allele status and the risk of early-onset occult coronary artery disease. Am J Hum Genet 2003; 72: 1154-1161
  • 12 Ahn Y-H, Jung JM, Hong SH. 8-Chloro-Cyclic AMP-induced Growth Inhibition and Apoptosis Is Mediated by p38 Mitogen-Activated Protein Kinase Activation in HL60 Cells. Cancer Res 2005; 65: 4896-4901
  • 13 Imamura A, Okumura K, Ogawa Y, Murakami R, Torigoe M, Numaguchi Y, Murohara T. Klotho gene polymorphism may be a genetic risk factor for atherosclerotic coronary artery disease but not for vasospastic angina in Japanese. Clin Chim Acta 2006; 371: 66-70
  • 14 Jo SH, Kim SG, Choi YJ, Joo NR, Cho GY, Choi SR, Kim EJ, Kim HS, Kim HJ, Rhim CY. KLOTHO gene polymorphism is associated with coronary artery stenosis but not with coronary calcification in a Korean population. Int Heart J 2009; 50: 23-32
  • 15 Oguro R, Kamide K, Kokubo Y, Shimaoka I, Congrains A, Horio T, Hanada H, Ohishi M, Katsuya T, Okamura T, Miyata T, Kawano Y, Rakugi H. Association of carotid atherosclerosis with genetic polymorphisms of the klotho gene in patients with hypertension. Geriatr Gerontol Int 2010; 10: 311-318
  • 16 Rhee E-J, Oh K-W, Lee W-Y, Kim S-Y, Jung C-H, Kim B-J, Sung K-C, Kim B-S, Kang J-H, Lee M-H, Kim S-W, Park J-R. The differential effects of age on the association of KLOTHO gene polymorphisms with coronary artery disease. Metabolism 2006; 55: 1344-1351
  • 17 Shimoyama Y, Taki K, Mitsuda Y, Tsuruta Y, Hamajima N, Niwa T. KLOTHO gene polymorphisms G-395 A and C1818T are associated with low-density lipoprotein cholesterol and uric acid in Japanese hemodialysis patients. Am J Nephrol 2009; 30: 383-388
  • 18 Semba RD, Cappola AR, Sun K, Bandinelli S, Dalal M, Crasto C, Guralnik JM, Ferrucci L. Plasma klotho and cardiovascular disease in adults. J Am Geriatr Soc 2011; 59: 1596-1601
  • 19 Abramovitz L, Rubinek T, Ligumsky H, Bose S, Barshack I, Avivi C, Kaufman B, Wolf I. KL1 internal repeat mediates klotho tumor suppressor activities and inhibits bFGF and IGF-I signaling in pancreatic cancer. Clin Cancer Res 2011; 17: 4254-4266
  • 20 Rubinek T, Shulman M, Israeli S, Bose S, Avraham A, Zundelevich A, Evron E, Nili Gal-Yam E, Kaufman B, Wolf I. Epigenetic silencing of the tumor suppressor klotho in human breast cancer. Breast Cancer Res Treat 2011; 133: 649-657
  • 21 Wolf I, Laitman Y, Rubinek T, Abramovitz L, Novikov I, Beeri R, Kuro OM, Koeffler HP, Catane R, Freedman LS, Levy-Lahad E, Karlan BY, Friedman E, Kaufman B. Functional variant of KLOTHO: a breast cancer risk modifier among BRCA1 mutation carriers of Ashkenazi origin. Oncogene 2010; 29: 26-33
  • 22 Wolf I, Levanon-Cohen S, Bose S, Ligumsky H, Sredni B, Kanety H, Kuro-o M, Karlan B, Kaufman B, Koeffler HP, Rubinek T. Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer. Oncogene 2008; 27: 7094-7105
  • 23 Kamari Y, Shaish A, Shemesh S, Vax E, Grosskopf I, Dotan S, White M, Voronov E, Dinarello CA, Apte RN, Harats D. Reduced atherosclerosis and inflammatory cytokines in apolipoprotein-E-deficient mice lacking bone marrow-derived interleukin-1alpha. Biochem Biophys Res Commun 2011; 405: 197-203
  • 24 Meir KS, Leitersdorf E. Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress. Arterioscler Thromb Vasc Biol 2004; 24: 1006-1014
  • 25 Kamari Y, Peleg E, Leibowitz A, Grossman E. Blunted blood pressure response and elevated plasma adiponectin levels in female Sprague Dawley rats. Am J Hypertens 2012; 25: 612-619
  • 26 Saito Y, Nakamura T, Ohyama Y, Suzuki T, Iida A, Shiraki-Iida T, Kuro-o M, Nabeshima Y-i, Kurabayashi M, Nagai R. In vivo klotho gene delivery protects against endothelial dysfunction in multiple risk factor syndrome. Biochem Biophys Res Commun 2000; 276: 767-772
  • 27 Fellmann L, Nascimento AR, Tibirica E, Bousquet P. Murine models for pharmacological studies of the metabolic syndrome. Pharmacol Ther 2013; 137: 331-340
  • 28 Wang Y, Sun Z. Klotho gene delivery prevents the progression of spontaneous hypertension and renal damage. Hypertension 2009; 54: 810-817
  • 29 Wang X, Sun Z. RNAi silencing of brain klotho potentiates cold-induced elevation of blood pressure via the endothelin pathway. Physiol Genom 2010; 41: 120-126
  • 30 Ohnishi M, Kato S, Akiyoshi J, Atfi A, Razzaque MS. Dietary and genetic evidence for enhancing glucose metabolism and reducing obesity by inhibiting klotho functions. FASEB J 2011; 25: 2031-2039
  • 31 Chihara Y, Rakugi H, Ishikawa K, Ikushima M, Maekawa Y, Ohta J, Kida I, Ogihara T. Klotho protein promotes adipocyte differentiation. Endocrinology 2006; 147: 3835-3842
  • 32 Kolovou G, Anagnostopoulou K, Mikhailidis DP, Cokkinos DV. Apolipoprotein E knockout models. Curr Pharmaceut Design 2008; 14: 338-351
  • 33 Zhou TB. Signaling pathways of apoE and its role of gene expression in glomerulus diseases. J Recept Signal Transduc Res 2013; 33: 73-78
  • 34 Doi S, Zou Y, Togao O, Pastor JV, John GB, Wang L, Shiizaki K, Gotschall R, Schiavi S, Yorioka N, Takahashi M, Boothman DA, Kuro OM. Klotho inhibits transforming growth factor-{beta}1 (TGF-{beta}1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem 2011; 286: 8655-8665
  • 35 Unger RH. Klotho-induced insulin resistance: a blessing in disguise?. Nature 2006; 12: 56-57