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The Pathogenesis of Hashimoto’s Thyroiditis: Further 
Developments in our Understanding

indicates that HT is likely to be an extreme in this 
distribution and does not constitute a separate 
disease entity, although there are different clini-
cal presentations across the distribution curve 
[3]. And while immunological techniques 
described below are defining discrete types of 
disease, such as the IgG4-related variant, for the 
purposes of this review we will not distinguish 
HT from other forms of autommune hypothy-
roidism except where indicated; this pragmatic 
approach is also necessary because of the rather 
loose definition that investigators apply to 
patients. There have been several recent reviews 
of this subject, in large part occasioned by the 
centenary of Hashimoto’s discovery [4–7]. We 
therefore have mainly concentrated on papers 
since 2010, to bring readers an update on recent 
developments in the field, focussing firstly on 
predisposing factors and then on the pathogenic 
mechanisms responsible for tissue damage.

Introduction
▼
Hashimoto’s thyroiditis (HT) sensu stricto is the 
occurrence of what was originally termed struma 
lymphomatosa, translated into English as lym-
phadenoid goitre, by Hakaru Hashimoto over 100 
years ago [1, 2]. These early observations were 
obviously made at a time when thyroid function 
testing was unavailable, immunology was nas-
cent and the disease was judged to be rare. As is 
now clear, HT is part of a spectrum of autoim-
mune diseases which affect the thyroid, ranging 
from typically self-limiting forms such as focal, 
silent and juvenile thyroiditis through to atrophic 
thyroiditis presenting as hypothyroidism with-
out goitre. There has been considerable specula-
tion as to the exact relationship between these 
entities; suffice here to say that good ultrasound 
evidence shows that there is a unimodal distri-
bution of thyroid size in hypothyroidism, which 
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Abstract
▼
Hashimoto’s thyroiditis (HT) is part of a spec-
trum of thyroid autoimmune conditions and this 
review provides an update on the latest develop-
ments in the field. HT has a genetic predisposi-
tion with a number of immune-related and 
thyroid-specific genes conferring disease suscep-
tibility. However, disentangling genes with pro-
tective and predisposing effect is a complex 
process that requires further work. The recent 
increase in the incidence of HT implicates envi-
ronmental factors in disease pathogenesis includ-
ing improved hygiene, increased dietary iodine 
intake, new treatment modalities and chemical 
agents. Additional unmodifiable predisposing 
factors include stress, climate, age and gender. 
Both cellular and humoral immunity play a role 
in HT pathogenesis. Defects in T regulatory cells 
and increased activation of follicular helper T 

cells may have a role in disease initiation/per-
petuation. Infiltrating lymphocytes can be 
directly cytotoxic to thyroid follicular cells (TFC) 
or may affect cell viability/function indirectly 
through cytokine production, which alters TFC 
integrity and modulates their metabolic and 
immune function. Thyroid peroxidase and thy-
roglobulin antibodies are present in the majority 
of HT patients and help with management deci-
sions. Antibodies against the sodium iodide sym-
porter and pendrin are present in a minority 
with little known about their clinical relevance. 
In addition to immune cells, recent work has 
identified DNA fragments, generated following 
cell death, and micro RNA as potential factors in 
HT pathogenesis. Despite the large number of 
studies, the mechanistic pathways in HT are still 
not fully understood and further work is required 
to enhance our knowledge and identify novel 
preventative and therapeutic clinical targets.
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Genetic Susceptibility
▼
Recent studies on susceptibility to HT have revealed several new 
aspects of interest. Using the diagnosis data set for military per-
sonnel in the USA, it has been established that HT has the high-
est incidence in white individuals, and is lowest in black and 
Asian/Pacific Islander individuals [8]. This difference may be the 
result of genetic and/or environmental factors, yet the pattern is 
reversed in Graves’ disease (GD), which shares some of these 
susceptibility factors; unravelling what causes these striking 
ethnic patterns would be a novel approach to understanding 
susceptibility. A related phenomenon is the differential cluster-
ing of additional autoimmune diseases that are associated with 
GD and HT; HT is markedly more associated with such disorders, 
especially Addison’s disease and type 1 diabetes mellitus [9]. 
Again this could be the result of genetic and/or environmental 
factors.
A genetic susceptibility to the inheritance of thyroid autoanti-
body patterns has been established and the familial aggregation 
of thyroid autoantibodies is clearly shown in a recent study of 
multiplex Han Chinese families [10]. Work on monozygotic 
twins discordant for HT has demonstrated that in the absence of 
thyroid disease, these individuals nonetheless share a higher 
than expected propensity to develop thyroid peroxidase (TPO) 
autoantibodies that recognise one of the 2 main epitopes on this 
autoantigen [11]. The technique of regression of offspring on 
mid-parent screening has been used to show that IgG4 subclass 
thyroid autoantibodies display heritability, albeit only in those 
with high levels of both TPO and thyroglobulin (TG) antibodies, 
and this could allow the development of novel screening meth-
ods to predict disease evolution [12].
Whilst more attention has been paid to GD with regard to find-
ing the responsible genes, there are an increasing number of 
attempts to investigate HT using either the candidate gene 
approach or genome wide association studies (GWAS). These 
genes can be broadly classified into those which control the 
immune response and those which are thyroid-specific and thus 
increase target organ risk. Amongst the first group, further work 
has been done on the archetypal immune response genes 
encoded on the HLA complex, which has revealed that 
HLA-B * 46:01 confers an increased risk of HT developing in Han 
Chinese children, using a combined case-control and family-
based approach [13]. Using a sample of 444 Japanese HT patients, 
HLA-A * 02:07 and HLA-DRB4 conferred susceptibility and the 
HLA-A * 33:03-C * 14:03-B * 44:03-DRB1 * 13:02-DQB1 * 06:04-
DPB1 * 04:01 haplotype conferred protection [14]. A smaller 
scale case control study of 75 Caucasian HT patients found that 
HLA-A2 did not confer protection against disease, in contrast to 
GD [15]. These results highlight the complexities of studying 
even a single set of genes, with both protective and susceptibil-
ity actions that may be in part epistatic [14] and which have eth-
nically restricted effects.
The involvement in autoimmunity of many other immunoregu-
latory genes besides those in the HLA complex is now clear; 
amongst these, single nucleotide polymorphisms (SNPs) in 
CTLA-4, PTPN22, CD40 and IL2R are known to have some effect in 
both GD and HT and more information has come from meta-
analyses. A recent meta-analysis of the A49G SNP in CTLA-4 has 
shown that this increases the risk of HT in both East Asian and 
white individuals, with odds ratios of 1.48 and 1.27, respectively 
[16]. By contrast, a meta-analysis of studies on the PTPN22 
C1858T polymorphism found no association with HT, although 

this was associated with GD [17]. The situation is similar with 
the CD40 C/T1 polymorphism, which is associated with suscep-
tibility to GD but not HT [18]. The latter study raises the ques-
tion of how to classify controls with high levels of thyroid 
autoantibodies; we do not agree with the conclusion that these 
individuals should be classified as having HT, especially given 
the independent heredity of such antibodies.
Polymorphisms in the genes which encode or regulate cytokines 
constitute another obvious set of candidates for testing, although 
results to date have been inconclusive. The largest study recently 
(of 202 Tunisian HT patients) found an association with an IL1RN 
VNTR polymorphism [19] and a study with a similarly sized 
population of 182 Chinese HT patients has shown that the 
rs763780 polymorphism in IL17F, but not the 3 studied SNPs in 
the IL17A gene, may also be associated with HT [20]. In a small 
scale study that was however replicated across 3 separate popu-
lations, the rs6887695 IL12B variant was more frequent in GD 
and less frequent in HT, compared to controls [21]. Another 
study of 108 Japanese HT patients, subdivided into mild and 
severe forms, has identified a borderline association with a SNP 
in IL6 in severe HT, but this study is compromised by the multi-
ple uncorrected comparisons and small size [22]. The same 
group, using a similar sized sample, have also reported associa-
tions of a SNP in GITR with mild rather than severe HT; this find-
ing is somewhat supported by the identification of a higher 
proportion of glucocorticoid-induced tumour necrosis factor-
receptor (GITR)-expressing T cells in HT individuals with the GG 
genotype of the SNP [23]. Such T cells may have regulatory and 
effector functions. The STAT family of proteins are transcription 
activators that regulate a number of immunoregulatory path-
ways, including cytokine signalling. Using a population of 250 
Chinese HT patients, a SNP in STAT3 was found to be associated 
with HT, as well as GD [24].
With respect to thyroid-specific genes, it has been established 
that polymorphisms in the gene encoding the TSH receptor con-
fer susceptibility to GD but not HT, whereas polymorphisms in 
TG appear to confer more general susceptibility to thyroid auto-
immunity. Five polymorphisms in TG have been associated with 
GD rather than HT in a recent Japanese cohort of patients, lead-
ing to identification of a putative protective haplotype for the 
former [25]. Attempts have also been made to understand how 
polymorphisms in TG may be implicated in pathogenesis; at 
least one possibility is that a disease-associated SNP in the pro-
moter confers increased activity, but only in the presence of 
interferon, which is clearly of interest given the effects of this 
agent therapeutically, as described below [26]. Although not 
thyroid-specific in tissue location, selenoproteins (SEP) are cen-
tral to thyroid hormone deiodination and selenium itself may 
have a role in predisposition as a dietary environmental factor 
(see below). In a study of 481 HT patients from Portugal, there 
was a significant association with a promoter SNP in SEPS1, giv-
ing an odds ratio of 2.24 [27]. Of the candidate gene studies just 
mentioned, this is by far the largest and the most likely therefore 
to have sufficient power to be reliable, but as with all the others, 
replication is required, a task compounded if consideration is 
taken of possible heterogeneity conferred by sex, ethnic back-
ground or disease subtype. As with other polymorphisms that 
may be relevant, epistatic effects and an interaction with envi-
ronmental factors, in this case selenium intake, increase the 
complexity of analysis.
GWAS offers a hypothesis-free approach to understanding dis-
ease susceptibility which allows the discovery of novel path-
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ways, although these studies have their own particular issues 
[28]. One good example is the uncovering of a new set of genetic 
markers, including polymorphism in MAGI3, which are associ-
ated with an increased risk of progression from TPO antibody 
positivity to hypothyroidism [29]. Using a custom-made SNP 
array to analyse over 100 000 common SNPs in 462 British HT 
patients, 4 definite new associations were found (7 when the 
sample was added to a larger group of Graves’ patients); these 
loci have been associated with other autoimmune disorders [30]. 
Another refinement has been to undertake detailed fine mapping 
of a locus previously linked to HT on chromosome 10q; this 
revealed an association with ARID5B, which has also been associ-
ated with rheumatoid arthritis and GD in Japanese patients [31].
A summary of current studies is provided in  ●▶  Table 1. It is clear 
that the genetics of HT are much more complex than previously 
thought and that a detailed understanding will only be gained 
slowly through adequately powered and replicated datasets. 
Association is not causation, and more work is needed to under-
stand how certain SNPs exert their effect, how they might inter-
act with one another through epistasis and how they also 
interact with environmental factors.

Environmental Contribution
▼
The importance of a direct or epigenetic role for environmental 
factors in the pathogenesis of HT is clear from the recent changes 
in epidemiology. A detailed analysis of the pathological speci-
mens at the Johns Hopkins Hospital over the last century has 
revealed that HT was rare before the 1950s, but it is now one of 
the commonest autoimmune disorders [32]. A survey from Aus-
tria of thyroidectomy specimens from 1979 to 2009 supports 
these data by showing an increase in HT over the last 31 years 
[33]. Such rapid changes clearly cannot be the result of any shift 
in genetic susceptibility, but a number of obvious environmental 
suspects have changed with sufficient rapidity to be credible 
candidates for this increase. Foremost amongst these are (i) the 
shift towards a more hygienic environment, which may skew the 
developing immune system away from microbial responses 
towards the development of allergic and autoimmune diseases, 
including those against the thyroid (reviewed in [34]), and (ii) an 
increase in dietary iodine. Many previous studies have demon-
strated that excessive dietary iodine can precipitate or exacer-
bate HT in susceptible individuals and this information continues 
to be gathered. For instance a 15 year follow-up of the Pescopa-
gano survey, which has monitored the effects of voluntary 
iodine prophylaxis in an iodine-deficient part of Italy, has shown 
that the prevalence of thyroid autoantibodies almost doubled 
and HT quadrupled during this time [35].
There are also epidemiological data suggesting that inadequate 
dietary selenium intake may exacerbate HT; selenium intake is 
geographically variable and in Europe has fallen by 50 % over the 
last 3 decades. However, a recent meta-analysis of trials of sele-
nium supplementation in HT showed no clear beneficial effect 
on thyroid morphology, although TPO autoantibody levels do 
fall over 3 months [36]. A Cochrane Systematic Review has come 
to much the same conclusion, with evidence that current studies 
are inadequate to assess any benefit [37]. The CATALYST trial is 
now under way, which may answer questions about a role for 
selenium in thyroid autoimmune disease decisively [38]. A final 
dietary component which has created interest is vitamin D, 
albeit with a major contribution to serum levels being due to sun 

exposure. Although there is some evidence of lower serum vita-
min D levels in individuals with HT, these changes may be the 
result of the metabolic changes of hypothyroidism as much as 
any aetiological effect, especially as the levels of vitamin D tend 
to be inversely related to the severity of thyroid dysfunction 
[39]. A recent review has examined this topic in depth, drawing 
attention to the limitations of previous studies of vitamin D in 
HT, which should be addressed in any future studies [40].
Treatment of patients with novel anticancer treatments, such as 
cytokines like interferon-α and tyrosine kinase inhibitors, can 
also induce transient or permanent thyroid dysfunction, includ-
ing HT; a comprehensive review of this topic has recently been 
published [41]. To examine the possibility that HT induced by 
interferon-α could operate through a distinct background geno-
type, a genomic convergence approach has been used, combin-
ing genetic association data with transcriptome analysis of 
interferon-regulated genes: this led to the identification of 3 
putative loci, HLA, SP100/110/140 (on chromosome 2q37.1) and 
TAP1 (on chromosome 6p21.3), which might be involved [42]. 
The immune reconstitution syndrome arises during the recon-
stitution phase after any type of lymphocyte depletion and may 
result in autoimmunity. When this affects the thyroid, it nor-
mally results in GD, as seen with alemtuzumab therapy in mul-
tiple sclerosis and the reversal of the lymphopenia of HIV 
infection with highly active antiretroviral therapy [43]. Alemtu-
zumab therapy does, however, result in hypothyroidism in 7 % of 
treated patients and is accompanied by TSH receptor antibodies 
(presumably functional blockers) in three-quarters of these 
cases [44]. There is also a single case report of painful HT arising 
after reconstitution in an HIV-infected individual receiving 
highly active antiretroviral therapy [45].
Smoking is associated with an increased risk of GD and espe-
cially ophthalmopathy, but generally conflicting results have 
been reported on any association with HT. A detailed popula-
tion-based, case-control study has recently found that smoking 
cessation is associated with a sudden and transient rise in HT 
[46], while a study of individuals genetically at risk of HT has 

Table 1  Summary of the genetic factors associated with Hashimoto’s 
thyroiditis.

Gene Comments

HLA Confirmed; various haplotypes associated, 
ethnically variable, some protective

CTLA-4 Confirmed
Cytokine genes Multiple small studies of various genes; 

need confirmation and replication
GITR (Glucocorticoid-
induced tumour necrosis 
factor-receptor)

Single study; needs confirmation and 
replication

STAT3 (STAT family) Single study; needs confirmation and 
replication

TG Best evidence for association is with Graves’ 
disease; may be associated with interferon-
induced HT

SEPS1 (selenoprotein S) Single study; needs confirmation and 
replication

MAGI3 Strong evidence from GWAS that this plus 
other markers are associated with progres-
sion from TPO autoantibody positivity to HT

ARID5B Strong evidence from fine mapping studies; 
needs replication in other populations

LPP, BACH2 plus 2 other 
loci on 2p25.1 and 11q21

Strong evidence from GWAS; needs replica-
tion in other populations
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shown that progression to overt hypothyroidism is less common 
in current smokers [47]. Moderate alcohol consumption also 
turns out to be protective, based on similar types of analysis 
[48, 49], and this is a feature shared with other autoimmune dis-
orders like rheumatoid arthritis. However, the exact immuno-
logical basis for these protective effects of smoking and drinking 
remain to be elucidated.
Infection has for decades been examined as a possible aetiologi-
cal factor in thyroid autoimmunity. There is evidence that hepa-
titis C virus may precipitate HT, and permanent hypothyroidism 
occurs in around 15 % of patients who have had subacute viral 
thyroiditis; some of these may have an autoimmune basis. 
Attempts to find viruses in thyroid material in HT have generally 
failed to be replicated. A recent such candidate is HHV-6 which 
appears to be active rather than latent when detected in patient 
with HT and shows tropism for thyroid follicular cells (TFC); 
these studies used relatively small numbers of patients and con-
trols (62 in total) and clearly more work is needed before draw-
ing any conclusions [50]. Another frequently studied candidate 
is Yersinia infection which has been associated in some studies 
with the development of Graves’ disease in particular. A recent 
prospective study of 790 relatives of probands at risk of thyroid 
autoimmunity found no evidence to support a role for Yersinia in 
the development of thyroid antibodies over a 4 year period [51]. 
Much less attention has been paid to environmental toxins as 
agents that could explain the rapid change in prevalence of HT 
but 2 recent epidemiological studies, one showing an increase in 
HT in those living near a petrochemical complex, and another 
showing an increase in hypothyroidism (HT not specifically 
identified) in those exposed to pesticides, show the potential of 
such compounds [52, 53]. A summary of the environmental fac-
tors associated with HT is shown in  ●▶  Table 2.

Existential Factors
▼
As well as the susceptibility conferred by genes and the environ-
ment, another set of factors influence the predisposition to thy-
roid disease; we have labelled these as existential [5], in that 
they are an intrinsic and unavoidable part of human existence. 
Thus, getting older increases the risk of HT, until the extremes of 
old age, and being female is the biggest risk factor currently 
known, as women develop HT up to 10 times more frequently 
than men. This strong female association remains unexplained 

although our hunch is that sex steroids have the critical role, as 
there is compelling evidence for such effects in animal models of 
many types of autoimmunity [54]. Alternative explanations 
include skewed X chromosome inactivation (away from the 
expected 50:50 parent of origin ratio) and foetal microchimer-
ism [55]. A recent survey of 490 patients with HT found no sig-
nificant difference in the inactivation of X chromosomes from 
normal, but when combined with 4 other studies in a meta-
analysis, results just reached significance, suggesting that skew-
ing may have some role (p < 0.03) [56]. Results were much more 
convincing for GD. A small study of 7 HT patients and 4 Graves’ 
patients has found a significantly higher number of circulating 
foetal lymphocytes than in 10 healthy controls, but there was 
also a significantly higher number in the Graves’ patients com-
pared to HT patients [57].
If microchimerism is important, it would seem reasonable to 
expect that HT would be more frequent in women with a higher 
number of pregnancies. Advancing parity has been associated 
with an increased risk of becoming TPO autoantibody-positive 
[58], although this study did not establish whether this was 
accompanied by HT itself. A survey of 4.6 million Danes for 
whom childbirth records were available has looked at hospitali-
sation records and found a slight overall increase in autoimmune 
diseases in those who had been pregnant, compared to women 
without children, with a relative risk of 1.04 [59]. There was a 
possible specific association with HT with a relative risk of 1.11 
(confidence interval 1.00–1.24). However, there was only a sig-
nificant effect in those women who had a single child rather 
than more children, and the effect was also only significant 
within 4 years of the birth of the most recent child. Despite the 
limitations of this study, notably in the ascertainment of cases 
through hospitalisation with all of its implications, these data 
indicate to us that any effect of parity (and hence microchimer-
ism) in HT is likely to be rather limited, and the results could just 
as readily be the result of the well-known post-partum exacer-
bation of autoimmune thyroiditis, which has its origins in preg-
nancy-induced alterations in maternal T cell regulation [60].
Stress has been associated with GD, but there is no evidence that 
it plays a role in progression to HT in predisposed individuals 
[61]. Seasonal effects have been examined, although these may 
be related to environmental influences such as infection. A 
recent study found no consistent impact of month of birth in 
predisposition to HT [62]. Climate may have an effect on predis-
position; preliminary findings show that Yakut women living in 

Table 2  Summary of the environmental factors associated with Hashimoto’s thyroiditis.

Factor Comments

Hygienic environment Modest epidemiological evidence in HT and other in other disorders; mechanism is via skewing of the 
immune response towards allergy and autoimmunity

Selenium deficiency Modest epidemiological evidence but trials of supplementation inconclusive
Vitamin D deficiency Weak epidemiological evidence; may be the result of hypothyroidism per se
Drugs (cytokines, especially interferon-α, possibly 
tyrosine kinase inhibitors, alemtuzumab)

Strong evidence; may operate against distinctive genetic background

Smoking Strong evidence for a protective effect; mechanism unclear
Alcohol Strong evidence for a protective effect; mechanism unclear
Infection Some cases following subacute thyroiditis may be autoimmune but so far unresolved; association with 

HHV-6 postulated; Yersinia infection has been proposed as a trigger for thyroid immunity but recent 
work failed to find convincing evidence to support this concept

Environmental toxins Weak epidemiological evidence; limited number of studies so far
Irradiation Modest epidemiological evidence after radioactive fallout or therapeutic neck irradiation
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Siberia have a higher than expected prevalence of TPO autoanti-
bodies [63]. The problems of global climate change might there-
fore include effects on autoimmunity in the future.

Pathogenic Mechanisms
▼
Autoimmune thyroid disease is characterised by lymphoid infil-
tration of the thyroid gland including T and B cells. Therefore, 
both cellular and humoral immunity have a role in the patho-
genesis of thyroid autoimmunity.

Cellular immunity
In autoimmune thyroid disease, T cells migrate from the periph-
ery into the thyroid gland and actively participate in the autoim-
mune process. The main cellular pathways that contribute to 
thyroid destruction are discussed with special focus on latest 
developments in the field.

Suppressor and regulatory T cell defects
Suppressor T cells were initially considered to be specific CD8 +  
cells tasked with inhibiting unwanted immune responses. Early 
work demonstrated defects in T suppressor cell response to thy-
roid-specific antigens in autoimmune hypothyroidism, implicat-
ing antigen-specific T suppressor failure in disease pathogenesis 
[64]. However, findings were criticised for the non-physiological 
experimental conditions and poor reproducibility of data, cast-
ing doubts on the importance of this putative pathway in disease 
pathogenesis. Some of the functions of suppressor T cells now 
appear to be those of regulatory T cells (Tregs), which represent 
5–10 % of CD4 +  cells [65]. Natural Tregs are characterised by high 
level of CD25 expression as well as expression of transcription 
factor Foxp3 [66, 67]. These cells can dampen the immune 
response through direct cell to cell contact or indirectly through 
the production of cytokines such as transforming growth factor 
(TGF)-β and interleukin (IL)-10 [68, 69]. Although some studies 
have shown altered Treg numbers or function in autoimmune 
thyroid disease (ATD), data have been inconsistent [70–73]. 
More recent work in 7 GD and 13 HT patients has convincingly 
demonstrated altered Tregs activity in ATD compared with 
healthy controls (n = 9) or individuals with Down’s syndrome 
(n = 3), a condition with known autoimmune predisposition 
[74]. Therefore, better understanding of the role of Tregs in the 
development of thyroid autoimmunity may allow early identifi-
cation of individuals at risk and may even establish novel thera-
peutic targets.
Another potential mechanism for the development of HT is 
decreased sensitivity of CD4 +  T cells to the inhibitory effect of 
TGFβ. Using peripheral blood cells, Mirandola and colleagues 
demonstrated increased protein kinase Cε expression in CD4 +  
cells, which is responsible for enhanced survival and activity of 
these cells, secondary to diminished response to TGFβ inhibition 
[75].

Follicular helper T cells
Follicular helper T cells (Tfh) are a relatively newly identified 
subset of T helper cells, involved in promoting antigen-specific B 
cells through the production of IL-21 [76]. These cells express 
chemokine receptor CXCR5 together with inducible costimula-
tor (ICOS) protein, which represents one of the molecules 
required for normal cellular function. Using flow cytometry, Zhu 

and colleagues [77] have shown increased Tfh cells in the periph-
eral blood of HT patients, which correlated with thyroid-specific 
antibody levels. Moreover, CD4 + CXCR5 + ICOShigh cells were found 
in HT thyroid tissue, further implicating these cells in disease 
pathogenesis.

Cytotoxicity and apoptosis
CD8 +  T cells against both TPO and TG are detected in patients 
with ATD and mediate gland destruction [78]. However, only 
2–3 % of infiltrating CD8 +  cells recognise TPO/TG, suggesting the 
majority of these cells are not thyroid autoantigen-specific. This 
is not unprecedented as similar data have been reported in type 
1 diabetes, another organ-specific autoimmune condition [79].
In addition to cytotoxicity, early reports implicated apoptosis in 
causing tissue destruction in autoimmune hypothyroidism [80]. 
Increased expression of the apoptotic molecule Fas is evident on 
TFC from HT tissue samples, and in vitro studies demonstrate 
enhanced Fas expression by cytokines but inhibition by TSH 
[81]. Indeed, the detection of apoptotic cell markers in HT tissue 
samples, including upregulation of caspase-3 and decreased 
expression of bcl-2, further supports the role for apoptosis in 
disease pathology [82]. More recent work has shown that pro-
inflammatory cytokines are not only responsible for disruption 
of thyroid hormone synthesis but can mediate apoptosis of thy-
roid follicular cells through increased oxidative stress [83].

Humoral Immunity
▼
Thyroid-specific antibody production is a key feature of ATD. We 
briefly summarise the main thyroid antibodies with the most 
recent developments in this area.

TPO/TG antibodies and immunoglobulin subclass
Antibodies against TG and TPO are present in almost all patients 
with HT [84]. In addition to aiding the diagnosis, TPO antibodies 
can be used to help predict development of hypothyroidism, par-
ticularly when combined with measurement of TSH levels [85].
IgG4-related sclerosing autoimmune disease was first reported 
more than a decade ago [86] and is characterised by significant 
organ infiltration of IgG4-positive plasma cells. A number of 
groups have recently documented a distinct variant of HT where 
the thyroid gland is infiltrated with IgG4-positive cells. Histo-
logically, IgG4-positive glands showed higher grade fibrosis and 
more widespread follicular cell degeneration compared with 
non-IgG4 thyroiditis. Clinical differences were also documented, 
as IgG4 positivity was associated with male gender, rapid pro-
gress of hypothyroidism, more diffuse low echogenicity of the 
thyroid gland and higher antibody levels [87, 88]. In support of 
the relationship between thyroid fibrosis and IgG4, other inves-
tigators found Riedel’s thyroiditis to be part of systemic IgG4 
disease spectrum, although only a small number of patients 
were analysed and further studies are warranted to confirm 
these findings [89].

Sodium iodide symporter (NIS) and pendrin antibodies
The NIS mediates iodine uptake by the thyroid gland, while pen-
drin is responsible for the efflux of iodine through TFCs. NIS anti-
bodies are found in 17–31 % of patients with ATD and in some 
cases these antibodies have a functional role in vitro by inhibit-
ing the activity of the symporter [86–89]. Antibodies against 
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pendrin are detected in only 9–11 % of patients with ATD [90, 91]. 
Although the frequency of NIS and pendrin antibodies is slightly 
lower in HT compared with GD, the marginal difference indi-
cates that these antibodies are unlikely to determine disease 
presentation [92, 93].

Thyroid stimulating hormone receptor (TSHR) antibodies
Antibodies against the TSHR receptor have a clear functional role 
in GD by stimulating receptor function (thyroid stimulating 
antibodies or TSAb). Less commonly, however, these antibodies 
possess blocking activity. The balance between TSAb and TBAb 
(thyroid blocking antibodies) can determine disease presenta-
tion (hyper- or hypothyroidism), which explains the fluctuating 
thyroid hormone levels in some patients with ATD. A number of 
factors can modulate the balance between TSAb and TBAb, 
including antithyroid drugs or thyroxine treatment and preg-
nancy [94]. In one unusual case reported recently, an 80 year old 
woman with long standing HT developed Graves’ disease, with 
apparently de novo synthesis of TSAb and no evidence of TBAb 
[95]. Understanding how such freakish fluctuations in TSHR 
autoimmunity occur would provide useful insights into the 
pathogenesis of thyroid autoimmunity.

The Role of Cytokines
▼
This topic has been previously reviewed [96, 97], and only a brief 
update is provided here. Cytokines were initially classified into 
those produced, in mice at least, by Th1 and Th2 T cell subsets, 
and are involved in cellular and humoral immune responses 
respectively. Later a third subset was added, called Th3 cells 
which mainly synthesise TGFβ and act as regulatory cells [98]. A 
more recent subset of Th17 cytokines was described, which 
includes IL-17 and IL-22, cytokines that are involved in the 
pathogenesis of chronic inflammatory conditions [98, 99]. 
Although IL-22 is classified by some as a Th17 cytokine, others 
describe a distinct subpopulation of T helper cells that produce 
this cytokine, termed Th22 [99–102].
Studies have attempted to understand the type of cytokine 
response in ATD and a predominance of a Th1 response in HT 
has been demonstrated [97, 100]. However, we should be cau-
tious in our interpretations as surgery is unusual in HT and 
could be introducing a selection bias making general applicabil-
ity of the results uncertain. Therefore, studies on peripheral 

blood cytokine levels may be more appropriate but these have 
their drawbacks in terms of sensitivity and specificity.
A study investigating IL-17 and IL-22 has shown increased 
plasma levels of these cytokines in ATD, particularly in patients 
with HT. This was associated with stronger expression of IL-17 
and IL-22 in the thyroid gland of HT patients compared with GD 
or controls, suggesting a specific role for these cytokines in auto-
immune hypothyroidism [101]. Production of IL-22 is promoted 
by IL-6 and tumour necrosis factor-α. Interestingly, peripheral T 
lymphocytes from HT patients show enhanced differentiation 
into Th22 cells following IL-6 stimulation in vitro. Moreover, 
IL-22 levels correlate with TPO antibody levels in patients with 
HT, suggesting a role for this cytokine in antibody production 
[102]. However, others have documented that IL-22 has a role in 
GD rather than HT pathogenesis [103]. Given these contradic-
tory data further studies are warranted to clarify the role of 
IL-22 in HT.
IL-23, produced by cells of the innate immune response, is part 
of the IL-12 family promoting a Th1 response. IL-23 serum levels 
were higher in 81 HT patients compared with 80 controls, 
although only 56 % of HT patients had detectable levels of this 
cytokine [104]. IL-14 and IL-16 have also been studied, as these 
too are involved in humoral and cellular immune responses 
respectively. IL-14 and IL-16 gene expression was detected in 
almost all HT tissue samples but only a minority of MNG, sug-
gesting a role for these cytokines in autoimmune hypothyroid-
ism. However, the detection of IL-14 and IL-16 in GD tissue 
samples indicates that these cytokines are not HT-specific but 
more likely to play a role in the diverse spectrum of ATD (Kemp 
et al., manuscript under revision). On the other hand, recent 
work suggests that interferon γ inducible protein 10, produced 
by thyrocytes and immune cells, may be responsible for more 
severe tissue destruction in thyroid autoimmunity and further 
work is needed to investigate this possibility [105].
In addition to the effects of cytokines on infiltrating inflamma-
tory cells, these molecules can modulate thyroid cell growth and 
function, and can even alter the immunological properties of 
these cells [97]. TFC integrity is compromised in HT, related, at 
least in part, to reduced expression of junction proteins, includ-
ing ZO-1 and JAM-A. In vitro studies have demonstrated that 
IL-1β can directly modulate junction protein expression, thus 
mediating TFC destruction in HT [106]. Cytokines can also 
reduce caveolin 1 production (part of the thyroxisome together 
with TPO and dual oxidase), thereby directly modulating thyroid 
hormone production [83].

Disease initiation and perpetuation

↓Treg function ↑Tfh cell activity DNA frag/miRNA

Lymphoid infiltration
(activation of cellular and humoral immune responses)

Cytotoxicity & apoptosis

Cytokine production

Antibody production
Compromised TFC integrity and function

Further stimulation of T and B cells

Fig. 1  Summary of the pathogenic mechanisms 
in Hashimoto’s thyroiditis. Compromised function 
to T regulatory (Treg) cells, increased activity 
of follicular helper T cells (Tfh), DNA fragments 
(frag) released following cell death and altered 
microRNA (miRNA) profile result in initiation and 
perpetuation of the autoimmune process. Thyroid 
infiltrating T and B cells result in cell cytotoxicity, 
apoptosis and antibody production. A large num-
ber of cytokines are synthesised by the infiltrating 
inflammatory cells, which further contribute to the 
inflammatory process and gland destruction.
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DNA Fragments and Micro RNA
▼
Previous work has shown that molecules released from dying or 
dead cells encourage the development of a sterile inflammatory 
milieu, which in turn activates the immune response [107]. 
More specifically, the release of genomic DNA has been shown to 
activate innate immunity [108]. In vitro thyroid cell injury and 
subsequent genomic DNA release was associated with the devel-
opment of an inflammatory reaction and compromised function 
of key thyroid proteins including NIS [109]. In a series of elegant 
experiments, the investigators demonstrated that histone H2B, 
which bound genomic DNA, was responsible for activation of 
innate immunity and therefore sterile thyroid injury appears to 
be enough to trigger thyroid autoimmunity.
MicroRNAs (miRNA), which are small noncoding RNA regions, 
have also been implicated in the pathogenesis of thyroid immu-
nity. Various miRNA have been shown to control innate and 
adaptive immune responses [110]. In HT tissue, obtained using 
fine needle aspiration, miR-155_2 was found to be decreased, 
coupled with an increase in miR-200a1 when compared with 
healthy control thyroid tissue [111]. In addition to tissue sam-
ples, serum miRNA was also tested with miR-22, miR-375 and 
miR-451 showing increased levels in both HT and GD patients 
compared with controls [112]. Further work in this area is 
required to understand the potential of miRNA as novel thera-
peutic targets in ATD in general and HT in particular.
The pathogenic mechanisms operating in HT are summarised 
in  ●▶  Fig. 1.
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