
Abstract
!

Hsp90 is an evolutionarily conserved adenosine
triphosphate-dependent molecular chaperone
and is one of the most abundant proteins in the
cells (1–3%). Hsp90 is induced when a cell under-
goes various types of environmental stresses such
as heat, cold, or oxygen deprivation. It is involved
in the turnover, trafficking, and activity of client
proteins, including apoptotic factors, protein ki-
nases, transcription factors, signaling proteins,
and a number of oncoproteins. Most of the
Hsp90 client proteins are involved in cell growth,
differentiation, and survival, and include kinases,
nuclear hormone receptors, transcription factors,
and other proteins associated with almost all the
hallmarks of cancer. Consistent with these diverse
activities, genetic and biochemical studies have
demonstrated the implication of Hsp90 in a range
of diseases, including cancer, making this chaper-
one an interesting target for drug research.
During the last few decades, plant secondary me-
tabolites have been studied as a major source for
lead compounds in drug discovery. Recently, sev-
eral plant-derived small molecules have been dis-
covered exhibiting inhibitory activity towards
Hsp90, such as epigallocatechin gallate, gedunin,
lentiginosine, celastrol, and deguelin. In this
work, an overview of plant secondarymetabolites
interfering with Hsp90 activities is provided.
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CEP: cepharanthine
CL: celastrol
17-DMAG: 17-dimethylaminoethylamino-17-

demethoxygeldanamycin
EGCG: (−)-epigallocatechin-3-gallate
EGFR: epidermal growth factor receptor 1
eNOS: endothelial nitric oxide synthase
ERα: estrogen receptor α
GDA: geldanamycin
Her2: human epidermal growth factor

receptor 2
HIF-1α: hypoxia-inducible factor-1α
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Hsp90: heat shock protein 90
LPS: lipopolysaccharide
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transition factor
NF-κB: nuclear factor-kappaB
NSCLC: non-small cell lung cancer
p-Akt: phosphorylated protein kinase B
PAH: polycyclic aromatic hydrocarbon
PI3K: phosphotidylinositol-3-kinase
Raf-1: proto-oncogene serine/threonine-
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transcription 3
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Hsp90 Activity Modulation by
Plant Secondary Metabolites

Authors Fabrizio Dal Piaz1, Stefania Terracciano1, Nunziatina De Tommasi1, Alessandra Braca2

Affiliations 1 Dipartimento di Farmacia, Università di Salerno, Fisciano (SA), Italy
2 Dipartimento di Farmacia, Università di Pisa, Pisa, Italy

Key words
l" Hsp90
l" Hsp90 inhibitors
l" plant molecules
l" client proteins

received Dec. 30, 2014
revised May 13, 2015
accepted May 30, 2015

Bibliography
DOI http://dx.doi.org/
10.1055/s-0035-1546251
Published online July 30, 2015
Planta Med 2015; 81:
1223–1239 © Georg Thieme
Verlag KG Stuttgart · New York ·
ISSN 0032‑0943

Correspondence
Prof. Nunziatina De Tommasi
Dipartimento di Farmacia
Università di Salerno
Via Giovanni Paolo II 132
84084 Fisciano (Salerno)
Italy
Phone: + 39089969754
Fax: + 39089969602
detommasi@unisa.it

1223

Dal Piaz F et al. Hsp90 Activity Modulation… Planta Med 2015; 81: 1223–1239

Reviews

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



1224 Reviews

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.
Introduction
!

Presently, the effective therapeutic interventions in cancer dis-
eases still remain elusive, thus the identification of new possible
molecular target(s) becomes crucial. In the last two decades, at-
tention has been focused on the role of Hsp90, an evolutionary
conserved molecular chaperone involved in the regulation, fold-
ing, stabilization, activation, and assembly of more than 200 ”cli-
ent” proteins, including apoptosis-related protein kinases, tran-
scription factors, and signaling proteins, directly associated with
most of the cancer hallmarks [1,2]. Structurally, Hsp90 is a flexi-
ble homodimer including three distinct domains: an N-terminal
nucleotide-binding domain where the ATPase activity is mainly
located, a middle client protein binding/ATP-hydrolysis regulat-
ing domain, and a C-terminus domain responsible for dimeriza-
tion of the protein [3]. Hsp90 exists in different isoforms: two in
the cytoplasm, Hsp90α (the heat shock-induced form) and
Hsp90β (the constitutively active form), one localized at the en-
doplasmic reticulum (94KDa glucose-regulated protein, Grp94),
one at the mitochondria (tumor necrosis factor receptor-associ-
ated protein 1, TRAP1), and finally the cell surface-bound, cell-re-
leased and cell-secreted Hsp90 collectively known as “extracellu-
lar Hsp90′′ (eHsp90). Several data reported in the literature sug-
gest the eukaryotic cytosol Hsp90α to be the major form involved
in cancer, also demonstrating that this isoform may have more
diverse action than Hsp90β [4]. In the presence of stressedmicro-
environments, cancer cells undergo adaptive mutations that lead
to an increment of Hsp90 activity. Therefore, in order to obtain a
simultaneous disruption of multiple signaling pathways impor-
tant for the growth and viability of cancer cells, and to induce cel-
lular apoptosis and/or necrosis, the inhibition of the Hsp90 pro-
tein folding machinery could represent a multifaceted approach
toward the tumor treatment [5–8]. Hsp90 inhibitors are grouped
into numerous classes based on individual modes of inhibition
which are as follows: i) obstructing the binding of ATP at the ATP-
ase catalytic site, ii) interference in co-chaperone/Hsp90 interac-
tions, iii) blocking the receptor interactions of client/Hsp90 alli-
ances, and iv) intervention in the routes of post-translational
modification in Hsp90 [9,10]. Regardless of the mechanism, a
hallmark of Hsp90 inhibition is the degradation of its client pro-
teins; the inhibition of this chaperone indeed leads Hsp90 client
proteins to adopt an aberrant conformation, which triggers their
ubiquitination, followed by proteasome-dependent degradation.
Therefore, compounds able to downregulate the levels of Hsp90
client proteins are often considered promising Hsp90 inhibitor
candidates.
Consistent with the notion that small molecules synthesized by
the plant kingdom can be considered evolutionary chosen “priv-
ileged structures” since they have evolved in a natural selection
process to achieve optimal interactions with biological macro-
molecules, natural molecules have shown an extraordinary po-
tential as modulators of proteins functions and have been sub-
jected to biological studies aimed at discovering their specific
molecular targets and elucidating important signaling pathways
[11]. Besides, many plant molecules have a crucial role as phar-
maceuticals, according to the current number of drugs based on
plant molecules in clinical trials or present in the market, and
these molecules depict a source of new leads for drug discovery.
Since Hsp90 is situated at the critical intersection of genotypes,
environment, and development, itʼs reasonable to expect that
natural products represent a fertile territory for the identification
of new Hsp90 inhibitors. Most natural products active as Hsp90α
Dal Piaz F et al. Hsp90 Activity Modulation… Planta Med 2015; 81: 1223–1239
inhibitors, such as radicicol, GDA, and 17-DMAG, are derived
from fungimetabolism and possess the benzoquinone ansamycin
(GA) or the resorcinol scaffold (radicicol). They are currently
being evaluated in over 80 ongoing or completed clinical trials,
offering a promising approach for the treatment of different can-
cer diseases [12,13].
However, there is still a wide requirement for new Hsp90 inhib-
itors, and the plant kingdom has been explored in order to find
new promising compounds. This review provides a brief excur-
sion of plant secondarymetabolites interfering with Hsp90 activ-
ities and highlights findings regarding their possible molecular
mechanism of action.
Flavonoids
!

Flavones and flavonols
Apigenin, chemically known as 4′,5,7,-trihydroxyflavone, is a
common flavone widespread in plants of the Asteraceae family
and in many fruits and vegetables. This flavonoid possesses vari-
ous clinically relevant properties, such as antitumor and anti-in-
flammatory activities [14]. Among its anticancer effects, it has
been reported to suppress metastasis, to inhibit cancer and cell
proliferation, and to have antiangiogenic properties mediated by
the alteration of different pathways [15]. Anyway, it has to be
considered that the metabolic activity of the gut microflora on
apigenin is often responsible for the modulation of its biological
activity as a dietary compound, since itʼs catabolized into smaller
phenolic compounds [16,17]. In a study focused on the investiga-
tion of the antiangiogenic effect of apigenin, it was found that it
suppresses the expression of VEGF in endothelial cells via the
degradation of HIF-1α protein mediated by interference with the
Hsp90 chaperoning function [18]. Recently, the in vitro therapeu-
tic potential role of apigenin for the treatment of multiple myelo-
ma has emerged. Different biological techniques reveled that api-
genin manifested antiproliferative activity in human multiple
myeloma through CK2-mediated phosphorylation of Cdc37, dis-
rupting the Hsp90/Cdc37/client complex via the proteasome
pathway [19]. Moreover, its modulation of the chaperone Hsp90
induced the degradation of many kinase client proteins, includ-
ing RIP1, Src, Raf-1, Cdk4, and Akt.
Chrysin (5,7-dihydroxyflavone) is a naturally occurring flavone
found in the plant kingdom (Passiflora caerulea L. and Passiflora
incarnata L., Passifloraceae) [20–22] endowed with many biolog-
ical activities, such as anti-inflammatory, anticancer, and antiox-
idant [23,24]. Although chrysin is a promising antitumor agent,
little information is known about its molecular mechanism. It
was described that chrysin inhibits the expression of HIF-1α and
VEGF in human prostate cancer DU145 cells [25]. In this study, it
was reported that chrysin inhibits the expression of HIF-1α by
multiple pathways, including Hsp90 modulation. In particular, it
was able to inhibit the binding of HIF-1α to Hsp90, resulting in
the suppression of HIF-1α expression [25].
Eupatilin, or 5,7-dihydroxy-3′,4′,6-trimethoxyflavone, is one of
the bioactive components of Artemisia asiatica Nakai (Astera-
ceae) extracts, which are known to have anti-inflammatory, anti-
oxidant, and antitumor effects [26]. In 2008, it was reported that
it has anti-inflammatory activity by targeting the NF-κB pathway.
The aim of this study was to gain a better understanding on the
molecular mechanism of eupatilin-induced attenuation of intes-
tinal inflammation induced by enterotoxigenic Bacteroides fragi-
lis (ETBF) stimulation in an intestinal epithelial cell culture. In
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particular, it was observed that this flavonoid reduces the activity
of NF-κB and the expression of proinflammatory mediators
through the dissociation of the complex Hsp90/IKK-γ [27].
Luteolin (3′,4′,5,7-tetrahydroxyflavone) is a natural flavonoid
contained inmanymedical herbs and vegetables (e.g., parsley, ar-
tichoke, celery, green pepper, and perilla leaf). In recent years, ex-
perimental evidences have shown that luteolin has multiple and
interesting biological profiles: antitumor, anti-inflammatory,
antioxidant, and radical scavenging properties, although the
problem of its bioavailability should be considered. In light of
the metabolic pathways of luteolin, in vitro studies should be
carefully assessed [28–31]. The antitumor activity of this flavo-
noid has been reported in vitro against different kinds of tumor
cells and also confirmed in vivo [30–32]. A recent study ascribed
luteolinʼs proapoptotic effect on carcinoma cells to Hsp90 modu-
lation [33]. In particular, it induces apoptosis of HeLa cells by pre-
venting the association between Hsp90 and STAT3. The binding
of luteolin to Hsp90 results in the degradation of Tyr705- and
Ser727-phosphorylated STAT3 through the proteasome-depen-
dent pathway as well as in the degradation of other Hsp90 client
proteins such as Akt and IKK. Molecular modeling and SPR ap-
proaches suggested the interaction of luteolin with the N-termi-
nal ATP-binding site, showing that it is able to prevent ATP-Hsp90
binding and to inhibit ATPase activity of this molecular chaper-
one [33]. In 2014, Hong et al. showed luteolinʼs efficacy as an
antitumor agent in NSCLC and this effect is ascribed to the lyso-
some-dependent degradation of the EGF by inhibiting its interac-
tion with Hsp90 [34]. Luteolin showed a potent anti-inflamma-
tory property in vitro, and it reduced LPS-induced lethality in a
mouse endotoxin shock model [35]. In addition, it was found to
significantly reduce the LPS-induced release of high-mobility
group B-1 (HMGB), a nonhistone chromosomal DNA-binding
protein involved in the pathogenesis of several inflammatory dis-
eases, both from mouse peritoneal macrophages and RAW 264.7
cells. Moreover, luteolin also inhibited high-mobility group B-1
translocation from the nucleus to the cytoplasma. This effect
was correlated to the destabilization of c-Jun and Akt through
the suppression of Hsp90 chaperone activity [35].
The naturally occurring flavonoid quercetin (3,3′,4′,5,7-pentahy-
droxyflavone) is a component of many common fruits and vege-
tables with multiple medicinal properties [36]. However, the ac-
tual bioavailability of this compound in vivo remains a controver-
sial point in making an assessment of its biological importance
[37]. Anti-inflammatory, antitumor, and antiproliferative activ-
ities were reported for quercetin [38–40]. Quercetin is able to
prevent or retard tumor growth probably thanks to multifunc-
tional effects, in particular, at themolecular level it, inhibits many
ATP binding enzymes, especially kinases such as CDK-4 and PI3K
[41]. Treatment with quercetin arrests the growth of cancer cells
both in vitro and in vivo, and also exhibits tumor cell selectivity
[42]. To date, it is well established that this flavonoid inhibits the
heat-induced expression of heat shock proteins in many different
cell types (such as human breast carcinoma cells and prostate
cancer cells) by affecting HSF1 hyperphosphorylation, DNA bind-
ing, and transcriptional activity [43]. Furthermore, quercetin in-
duces cancer cell apoptosis in three different prostate cancer cell
lines by downregulating the levels of Hsp90 [44]. Further evi-
dence of quercetinʼs ability to interact with this chaperone was
furnished by a proteomic approach that revealed Hsp90 as a pos-
sible target of this flavonoid [45]. Finally, a downregulation of the
level of Her-2/neu protein in Her-2/neu overexpressing human
breast cancer SK‑Br3 cells, in time- and dose-dependent man-
ners, was induced by quercetin treatment. In particular, this ef-
fect was ascribed to the polyubiquitination of Her-2/neu and to
an increase in interaction between Hsp90 and Her-2/neu [46].

Isoflavones
Derrubone, a prenylated isoflavone originally isolated from the
Indian tree Derris robusta (Roxb ex DC) Benth. (Fabaceae) [47],
was identified in 2007 as a new potent C-terminal Hsp90 inhib-
itor through a high-throughput screening assay of a large chemi-
cal library. This screening was based on the measure of Hsp90-
dependent refolding of thermally denatured firefly luciferase
which is catalyzed by the Hsp90 present in rabbit reticulocyte ly-
sate [48]. Biological studies revealed that derrubone inhibits
Hsp90 with an IC50 value of 0.23 ± 0.04 µΜ and possesses potent
antiproliferative activity against two human breast cancer cell
lines, MCF-7 and SkBr3, with IC50 values of 9 ± 0.70 and
12 ± 0.30 µM, respectively [48]. Cell-based assays showed that
this natural compound causes degradation of Hsp90 client pro-
teins, including Raf-1, Akt, Her2, and ERα, in a concentration-de-
pendent manner and does not inhibit the ATPase activity of
Hsp70. In addition, derrubone inhibits the interaction of Hsp90
and the oncogenic client protein Cdc37 (cell division cycle pro-
tein 37) with HRI in breast cancer cell lines, suggesting, therefore,
a potential chemotherapeutic use in human breast cancer [49–
51]. The effect of derrubone on the Hsp90 protein folding ma-
chinery is due to its ability to stabilize Hsp90 client interactions
and to prevent the progression of the Hsp90/co-chaperone com-
plex, containing bound client proteins through its cycle [48].
Soon after its discovery, a small collection of selected analogues
was synthesized and evaluated for antiproliferative activity, ex-
hibiting only a modest improvement in the biological activity
over the natural product [52]. Recently, to further investigate
the crucial structural features for Hsp90 inhibition, Mays and
coworkers reported the design, synthesis, and biological evalua-
tion of flavones and isoflavone chimeras of novobiocin and der-
rubone [53]. These studies revealed that the functionality at the
3-position of the isoflavone is essential for the modulation of
Hsp90 and, moreover, suggest a different binding mode for the
bicyclic ring system present in both natural compounds. In
2014, molecular docking studies performed on four different
Hsp90 inhibitors, novobiocin, clorobiocin, EGCG, and derrubone,
led to the identification of the specific ATP-binding residues of
the C-terminal domain (Leu 665, Leu 666, and Leu 694) as the
key amino acids involved in the ligand binding. Among these four
natural inhibitors, derrubone showed the highest binding energy
for the Hsp90 C-terminal domain [54].

Chalcones
Butein (3,4,2′,4′-tetrahydroxychalcone) is a chalcone found in the
stem bark of cashews (Semecarpus anacardium L., Anacardia-
ceae), the heartwood of Dalbergia odorifera T. Chen (Fabaceae),
and the traditional medicinal herbs Caragana jubata Pall. (Ana-
cardiaceae) and Rhus verniciflua Stokes (Anacardiaceae) [55]. Bu-
tein exhibited pleiotropic properties, such as anti-inflammatory
effects, in macrophages and adipocytes, probably by inhibiting
the NF-κB and mitogen-activated protein kinase signaling path-
ways [56,57] and anti-fibrogenic [58] and anticancer activity
[59]. Furthermore, it influences cell proliferation, apoptosis, and
the cell cycle in many human tumors, including liver, breast, and
pancreatic cancers, suggesting a significant antineoplastic thera-
peutic potential [60–62]. In a recent study, the antiproliferative
activity of this chalcone was evaluated against two different
Dal Piaz F et al. Hsp90 Activity Modulation… Planta Med 2015; 81: 1223–1239
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drug-resistant cancer cell lines, cisplatin-resistant ovarian cancer
cells (A2780cis) and gefitinib-resistant NSCLC cells (H1975).
However, even if butein moderately inhibited cell proliferation
in a concentration-dependent manner, theWestern blot analyses
revealed a robust dose-dependent degradation of oncogenic
Hsp90 client proteins, Her2, Met, Akt, EGFR, and a small induc-
tion of Hsp70 [63]. These results suggested that 3,4,2′,4′-tetrahy-
droxychalcone inhibits the Hsp90 chaperoning function and may
represent a therapeutic agent to overcome drug resistance in
cancer therapy. In this context, in 2014, the synthesis of some bu-
tein analogues and their biological evaluation against gefitinib-
resistant NSCLC cells (H1975) provided a new bioactive com-
pound with a more potent antiproliferative effect on H1975 can-
cer cells through Hsp90 inhibition [64].
Flavokawain B is a naturally occurring chalcone isolated from the
extract of kava-kava [Piper methisticum (L.) G. Forst, Piperaceae],
a native plant to the Pacific Islands used as a social drink and as a
traditional remedy, and from Alpinia pricei Hayata (Zingibera-
ceae), a perennial rhizomatous native to Taiwan commonly used
in traditional Chinese food and folk medicine [65]. The antitumor
potential of the kava extract chalcones has been referred to epi-
demiological studies that correlate the consumption of kava root
extracts in the Pacific Islands with a lower incidence of cancer
[66,67]. Different studies have shown that flavokawains (flavoka-
wains A, B and C) are apoptotic inducers and anticarcinogenic
agents. Moreover, flavokawain B has been reported to induce ap-
optosis and to have potent antitumor effects both in vitro and in
vivo against several carcinoma cell lines, including prostate, co-
lon, bladder, oral, human osteosarcoma, lung cancer cells, and
mesenchymal tumors such as synovial sarcoma and uterine leio-
myosarcoma [68–72]. Taken together these data suggest that
multiple pathways are involved in flavokawain B-mediated anti-
proliferative activitity. In particular, recent findings have demon-
strated that this promising chalcone inhibits the growth of gefti-
nib-resistant NSCLC, H1975, with an IC50 value of 33.5 µM and its
antiproliferative activity is correlated to Hsp90 inhibition [73].
Flavokawain B induces the downregulation of EGFR, Met, Her2,
Akt, Cdk4, and Hsp90 client proteins and upregulates the cellular
level of Hsp70 in a concentration-dependent manner, disrupting
the Hsp90 protein folding machinery.
Licorice root has been used in traditional medicine for the treat-
ment of diverse pathological conditions such as bronchial asth-
ma, gastric ulcer, and inflammation [74]. One of the major and
biogenetically characteristic chalcones isolated from the root of
Xinjiang liquorice, Glycyrrhiza inflate Batalin (Fabaceae), is lico-
chalcone A, which is well known for its biological properties
[75]. The antitumor activity of licochalcone A has been discov-
ered against gastric cancer cells and in androgen-independent
PC-3 prostate cancer cells by cell cycle arrest and apoptosis in-
duction [76,77]. Furthermore, licochalcone A exerted potent
anti-inflammatory effects in in vitro and in vivo models induced
by LPS [78]. In 2013, from a screening program of natural com-
pounds for the identification of new potential Hsp90 inhibitors,
licochalcone A was found to inhibit, with a modest potency
(IC50 = 50 µM), the growth of the H1975 cancer cell line and to in-
duce the degradation of Hsp90 client proteins such as the signal-
transducing proteins Akt, Her2, EGFR, and Met [78]. In this study,
a docking pose of licochalcone A bound to the N-terminal ATP
binding site of human Hsp90 was also proposed.
Dal Piaz F et al. Hsp90 Activity Modulation… Planta Med 2015; 81: 1223–1239
Catechins
Catechins are the major constituents in green tea [Camellia sinen-
sis (L.) Kuntze, Theaceae] (30–42% of dried weight). EGCG partic-
ularly is one of the most abundant polyphenols (50% of total cat-
echins) and is well known for its antioxidant properties, which is
crucial for its preventing activity in cancer and cardiovascular
diseases. EGCG has been extensively studied for its capability to
inhibit cell proliferation and induce apoptosis in several human
cancer cells [79]. In the last decades, many different target and
signaling pathways have been demonstrated as a partner of EGCG
in various cell lines. The first report on EGCG binding to Hsp90
was in 2005 when Palermo et al., studying the AhR gene tran-
scription, demonstrated that it directly binds Hsp90 to the C-ter-
minus of the chaperone, resulting in a conformational change re-
sponsible for a modification of the Hsp90-AhR interaction, lead-
ing to the inhibition of AhR transcriptional activation. EGCG
seems to interact with the XAP2-bound Hsp90 complex [80]. In
2009, Yin and coworkers studying the binding site of EGCG with
Hsp90. Using ATP and novobiocin as reference compounds, they
demonstrated that EGCG protects a C-terminus Hsp90 fragment
from trypsine-catalized lysis [81]. They also stated that EGCG
binds at/or near the C-terminal ATP binding site on Hsp90 pro-
ducing the block of chaperone dimerization [81]. In this study, it
was also established that EGCG stabilizes the association of
Hsp70, Cyp40, and XAP-2 to Hsp90. In this way, EGCG could sta-
bilize the Hsp90 co-chaperones complex. In the same year, Li and
coworkers, using a proteolytic fingerprint assay, confirmed that
EGCG protected the C-terminus from cleavage by high concentra-
tions of trypsin [82]. Thus, EGCG impairs the association of
Hsp90/Hsp70 and Hsp90/p23 by directly binding to the C-termi-
nal region, inhibiting the Hsp90 chaperoning function. One year
later, other authors carrying out an EGCG-conjugated Sepharose
4B beads pull-down assay confirmed that Hsp90 interacts effi-
ciently with the molecule, stating also that EGCG competes with
ATP for binding of the ATPase domain of Hsp90 inMCF7 cell lines.
They also studied the expression of Hsp90 both in vitro and in
vivo. The immunohistochemistry assay showed that the levels of
Hsp90 were decreased in EGCG-treated mice compared with the
control [83]. Therefore, evidences on the Hsp90 EGCG binding
site are in disagreement. The ability of the EGCG Hsp90 function
may not be the only mechanismwhereby EGCG exerts its antitu-
moral activity, as many EGCG targets have been reported [84,85].
Its interactionwith Hsp90may be a commonmechanism for sev-
eral of the proposed targets. Many of the proteins reported to
bind to EGCG are Hsp90 client proteins or closely related to this
chaperone.
Another polyphenol constituent of green tea, (−)-epicatechin,
was reported to induce the activation of eNOS in calcium de-
pleted HCAE cells in an Akt- and Hsp90-dependent manner [86].
Black tea polyphenol phytocomplex, theaflavins, and thearubi-
gins, also extracted from tea, downregulated the expression level
of Hsp90 in human leukemic U937 and K562 cells. Following the
treatment of these cells with the Hsp90 inhibitor 17-AAG alone
or in combination with theaflavins and/or thearubigins, the au-
thors observed the downregulation of the expression of p-Akt,
cD1, and cDK2. These data supported the hypothesis that the in-
hibition of Hsp90 by these polyphenols caused the downregula-
tion of its client proteins [87].
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Biflavonoids
SPR analysis was used to evaluate the ability of the biflavonoids
isolated from Daphne linearifolia Hart. (Thymelaceae) to interact
with Hsp90. These compounds interacted with the immobilized
protein with a KD in the µM range, and sensible differences in
their affinity towards Hsp90were observed. Among biflavonoids,
2′′-hydroxygenkwanol A showed the best affinity towards Hsp90
(KD 0.5 ± 0.10 µM) compared to the other tested compounds. The
presence of a hydroxyl group on C-2′′ increases the stability of the
biflavonoid/Hsp90 complex about three times [88].
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Coumarins
!

Since 2000, when the fungal aminocoumarins novobiocin was
identified as a new type of Hsp90 inhibitor acting with a mecha-
nism clearly different from that of classical anti-ATPase inhibitors
such as GDA and radicicol [89], plant coumarins were screened in
order to identify further Hsp90 modulators. However, such a
large effort produced poor results, and actually only one plant
coumarin can be undoubtedly considered an Hsp90 inhibitor:
GUT-70. It is a tricyclic coumarin extracted from the stem bark
of Calophyllum brasiliense Britton (Calophyllaceae) showing sig-
nificant and specific cytotoxicity towards human leukemic cells
[90] and proapoptotic effects on mantle cell lymphoma cell lines.
These anticancer activities can be, almost partially, ascribed to
GUT-70′s ability to interact with Hsp90, as inferred by specific
competition studies, and to induce intracellular level reductions
for some Hp90 client proteins, such mt-p53, Raf-1, cyclin D1,
and Akt [91].
The only other report on plant isolated coumarin interactionwith
Hsp90 is the KD (~ 0.20 µM) of the dicoumarinyl ether glycoside-
Hsp90 interaction obtained through SPR analysis by Malafronte
et al. in 2012. This result was expected on the basis of the well-
know affinity of novobiocin and its derivatives towards Hsp90
[88].
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Anthraquinones
!

Anthraquinones are well known for their action on the gastroin-
testinal system and for their estrogenic activities. However, some
interesting findings have been reported also on the antiprolifera-
tive and antiangiogenic effects, which could be related to Hsp90
inhibition [92]. Aloe-emodin, a natural anthraquinone purified
from different aloe latex, was shown to have antiproliferative ef-
fects on breast cancer cell proliferation by downregulating ERα
protein levels. This downregulation was due to the inhibition of
interaction of ER with Hsp90, leading to a significant increase of
ER ubiquitination and proteasomal degradation [93]. Interesting-
ly, the related compound emodin had no effect on Hsp90/ER
binding. On the other hand, the semisynthetic derivative emodin
azide methyl anthraquinone strongly inhibits the interaction of
Hsp90 with several client proteins. In particular, it induces pro-
teasomal degradation of the Her2/neu protein, a transmembrane
tyrosine kinase well known to be associated with a poor progno-
sis in breast cancer, preventing its interaction with Hsp90 [94].
Also rhein, the primary anthraquinone in the roots of Cassia alata
L. (Fabaceae), was described as a promising antitumoral agent,
but its effect seems to be mainly related to the inhibition of tu-
mor-induced angiogenesis by suppressing the activation of PI3K,
p-Akt, and phosphorylated extracellular signal-regulated kinase.
However, an in-depth investigation on its mechanism of action in
breast cancer cell lines revealed that rhein induces proteosomal
degradation of some Hsp90 client proteins, such as NF-κB and
Her-2, thus suggesting this anthraquinone as a direct inhibitor
of Hsp90 [95].
Tannins
!

The ellagitannin geraniin, firstly isolated from the Japanese me-
dicinal plant Geranium thunbergii Siebold ex Lindl. & Paxton
(Geraniaceae), has emerged from an SPR-based screening of a
small library, including different plant polyphenols, as an effi-
cient ligand of Hsp90 (KD 415 ± 2.70 nM) [96]. On the basis of this
first evidence, the authors carried out several biological and bio-
chemical assays, demonstrating that geraniin dose-dependently
inhibits ATPase and chaperone activities of Hsp90. Moreover,
the level of the client proteins c-Raf, pAkt, and EGFR was strongly
downregulated in two cancer cell lines (HeLa and Jurkat) treated
with different doses of geraniin (from 0.5 to 10 µM). Preliminary,
a structural investigation performed on the Hsp90/geraniin com-
plex suggested the N-terminal region of the protein to be in-
volved in geraniin binding [96]. Geraniin has been shown by dif-
ferent authors to possess several biological activities: it sup-
presses A549 cancer cells proliferation, arresting the cell cycle in
the S phase [97], negatively modulates the expression of carbonic
anhydrase II mRNA in osteoclasts [98,99], attenuates radiation-
induced damage in mice splenocytes by reducing DNA breakage
and apoptosis [100], and inhibits human enterovirus 71 replica-
tion [101]. Interestingly, most of these activities could depend on
geraniinʼs ability to inhibit Hsp90 function. However, the biolog-
ical effects of tannins usually depend on their grade of
polymerization and solubility. Highly polymerized tannins ex-
hibit low bioaccessibility in the small intestine and low ferment-
ability by colonic microflora. Therefore, the low bioavailability of
this class of compounds should be considered [102].
Terpenes
!

Monoterpenes
Picrocrocin is a monoterpene glycoside constituent of saffron
(Crocus sativus L., Iridaceae) stigmas, and itʼs a precursor of safra-
nal. In a study to attempt the identification of the antitumor ther-
apeutic target of saffron, picrocrocin was subjected to a compar-
ative analysis based on two different reverse screening ap-
proaches, i.e., reverse docking system based on an id Target and
the reverse pharmacophore mapping strategy based on a Pharm-
Mapper system. Results suggested that picrocrocin acts as a com-
petitive inhibitor in the ATPase site of Hsp90α, revealing that an
electrostatic interaction and hydrogen bonds facilitate the bind-
ing of the molecule in the ATPase catalytic site of the enzyme and
can possibly act as a competitive inhibitor and a potential antitu-
mor drug [103].

Iridoids
In a target-oriented screening on a plant molecule library for pu-
tative Hsp90 inhibitors, the class of iridoids was selected as one
chemical scaffold. Iridoids, secoiridoids, and C9-type iridoids
were screened, and only the latter showed a promising inhibitory
activity. These results motivated the authors to isolate C9-type
iridoids from two plants belonging to the Bignoniaceae family,
Dal Piaz F et al. Hsp90 Activity Modulation… Planta Med 2015; 81: 1223–1239
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Tabebuia argentea Britt. and Catalpa bignonioides Walter. A SPR-
based binding assay was performed to study the binding of C9-
type isolated iridoids to Hsp90. Fourmonomers, catalposide, spe-
cioside, 3,4-dihydrocatalposide, and 6-O-p-hydroxybenzoyl-5,7-
bisdeoxycynanchoside, and two dimers, named argenteoside A
and B, were demonstrated to bind the chaperone [104]. Argen-
teoside A and B showed a good affinity towards Hsp90, having
KD values measured for the interaction with the chaperone of KD

14 ± 4.00 nM and 50 ± 9.00 nM, respectively, comparable to that
of radicicol (4.20 nM), used as a reference compound. Moreover,
these compounds showed a kinetic dissociation constant (kd) no-
tably lower than those measured for the monomers, indicating
that the Hsp90/dimeric iridoids complexes were extremely sta-
ble. Thus, a panel of chemical and biological approaches was used
to characterize the most active iridoid argenteoside A inhibitory
activity. ATPase assay, citrate synthase aggregation assay, and
cell-based studies were carried out to deepen the study of the in-
teraction between argenteoside A and the enzyme, suggesting
that it efficiently inhibited Hsp90 ATPase and chaperone activity,
downregulating Hsp90α client proteins without inducing any in-
crease in Hsp70 levels. The structural characterization of the
Hsp90-argenteoside A complex was obtained by limited proteol-
ysismass spectrometry-based strategy analysis using trypsin and
chemotrypsin as proteolytic probes. A comparison between the
cleavage sites of Hsp90 and the Hsp90-argenteoside A complex
demonstrated that the N-terminal domain and a middle domain
of the chaperone were involved in the molecule binding. To ob-
tain more details about a possible binding mode of argenteoside
A on Hsp90, a molecular modeling analysis was also performed.
Achieved results were refined taking into account the limited
proteolysis experimental data. This last study supported the view
that argenteoside A interacts with the N-terminal domain as dis-
closed by limited proteolysis analysis. C9-types iridoids may be
considered a new promising chemical scaffold for an Hsp90 in-
hibitors drug discovery program [104].
Recently, oleocanthal, an olive oil phenolic component, has at-
tracted increasing interest for its biological effects. This molecule
was reported to interfere with a number of pathways related to
inflammation and Alzheimerʼs disease [105]. Margarucci and co-
authors, to obtain a comprehensive identification of oleocanthal
interactome, applied a mass spectrometry proteomic approach.
The study of oleocanthal putative partner in HeLa and U937 cell
lysates revealed Hsp90 as a unique shared target. Oleocanthal
was found to strongly inhibit the Hsp90 ATPase activity in a con-
centration-dependent manner, similar to radicicol. A molecular
docking analysis suggested a potential covalent reactivity be-
tween the compound and the chaperone. This interactionwas al-
so analyzed by detailed MS analysis. The authors suggested that
the correct positioning of oleocanthal in the Hsp90 binding site
was induced by van der Waals and hydrophobic interactions,
and is followed by covalent modifications at Lys112 and Lys58.
Moreover, oleocanthal influenced the Hsp90 oligomeric state by
inducing a chaperone conformational change with no covalent
oleocanthal cross-linked species between Hsp90 monomers.
Anyway, oleocanthal did not influence the regulation of Hsp90
and Hsp70 [106].

Sesquiterpenes
Among sesquiterpenes, terpenes with a C15 carbon atom skele-
ton, two compounds isolated from plants of the Zingiberaceae
family, were found to interact with Hps90. β-Elemene is an active
component of the medicinal plant Curcuma wenyujin Y.H. Chen
Dal Piaz F et al. Hsp90 Activity Modulation… Planta Med 2015; 81: 1223–1239
& C. Ling (Zingiberaceae) and antagonizes glioblastoma cells by
inducing apoptosis. Zhao et al. found that β-elemene disrupted
the Hsp90/Raf-1 complex, hypothesizing that an alkylating agent
could antagonize the molecular chaperone function of Hsp90
(that is dependent on its conserved spatial conformation), caus-
ing its misfolding and unbinding to Raf-1 [107]. Deactivation of
Raf-1 consequently inhibited the Raf/MEK/ERK pathway, leading
to apoptosis of glioblastoma cells.
Zerumbone, isolated from Zingiber zerumbet Smith (Zingibera-
ceae), was reported to exert many bioactivities such as cancer
preventive, anti-inflammatory, and detoxifying actions. Ohnishi
et al. studying zerumboneʼs possible mechanism of action in hep-
a1c1c7 mouse hepatoma cells found that this compound bound
to proteins through its α, β-unsaturated carbonyl group. The au-
thors hypothesized that zerumbone-modified proteins were rec-
ognized by Hsp90 for heat shock response induction [108].

Diterpenes
Andrographolide, 14-deoxy-11,12-didehydroandrographolide,
and neoandrographolide are the major labdane diterpenoids iso-
lated from Andrographis paniculata (Burm.f.) Wall ex Nees, an
herbaceous plant belonging to the Acanthaceae family, that have
exhibited a variety of pharmacological activities [109]. Androgra-
pholide possesses interesting in vitro and in vivo anti-inflamma-
tory (asthma, stroke, and arthritis) and anticancer effects [110,
111]. Indeed, it suppresses the secretion of cytokines, chemo-
kines, and inflammatory enzymes (iNOS and COX) from macro-
phages [112]. In these years, many studies have reported androg-
rapholide as a very promising compound for cancer treatment,
and several molecular mechanisms and potential molecular tar-
gets have been proposed for its antitumor effect [111]. A number
of reports showed that andrographolide and its analogues in-
duced cell cycle arrest and promoted apoptosis in human cancer
cells by interfering with various cell signaling pathways. In a re-
cent study, Liang and coworkers demonstrated that this natural
compound suppresses viral sarcoma-induced epithelial cellular
transformation by promoting viral sarcoma protein degradation
[113]. These findings provide evidence that andrographolide ex-
erts its anticancer action by a novel mechanism involving the
degradation of sarcoma oncoprotein. In 2014, to further investi-
gate its biological activity, using proteomics andWestern blot ap-
proaches, they proposed a novel mechanism for the suppression
of cancer cell malignancy induced by andrographolide through
the inhibition of the Hsp90 chaperone machinery and depletion
of Hsp90-dependent client proteins. Finally, a treatment with an-
drographolide induced Hsp90 cleavage, downregulated the client
protein Bcr-Abl, and inducted apoptosis in K562 cells [114].
Teucrin A, a furan-containing diterpenoid, is a major constituent
of the neo-clerodane diterpenoid fraction of the hydroalcoholic
extract of germander (Teucrium chamaedrys L., Lamiaceae).
Among the broad range of protein targets affected by teucrin A
treatment in the rat liver, the cytosolic Hsp90 was found as a tar-
get of the activated diterpenoid [115].
Rosmarinic acid, carnosic acid, and carnosol are the three major
bioactive constituents in rosemary leaves (Rosmarinus officinalis,
L. Lamiaceae) responsible for the antioxidant, anti-inflammatory,
and anticancer properties. Carnosol is contained in zyflamend, a
commonly used dietary supplement that contains extracts of ten
common herbs including rosemary (R. officinalis), turmeric (Cur-
cuma longa L., Zingiberaceae), ginger (Zingiber officinale Roscoe,
Zingiberaceae), holy basil (Ocimum sanctum L., Lamiaceae), green
tea (C. sinensis), hu zhang (Polygonum cuspidatum Sieb. & Zucc.,
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Polygonaceae; a source of resveratrol), Chinese goldthread (Cop-
tis chinensis Franch., Ranunculaceae), barberry (Berberis vulgaris
L., Berberidaceae), oregano (Origanum vulgare L., Lamiaceae), and
baikal skullcap (Scutellaria baicalensis Georgi, Lamiaceae). The
inhibition of Hsp90 ATPase activity induced by carnosol and zy-
flamend has been reported [116]. In this study, both carnosol
and zyflamend inhibited Hsp90 function leading to a rapid re-
duction in AhR levels, an Hsp90 client protein that is strongly in-
volved in PAH-induced carcinogenesis. Tobacco smoke, a source
of PAHs, activates the AhR, leading to the improved transcription
of CYP1A1 and CYP1B1, which encode proteins that convert PAHs
to genotoxic metabolites. Through the inhibition of Hsp90 ATPase
activity, carnosol induces a decrease in AhR protein levels, sup-
presses PAH-mediated activation of CYP1A1 and CYP1B1, and re-
presses mutagenesis [116,117]. These results suggest that the
antitumor effects of rosemary herbs may be attributed to the in-
hibition of Hsp90 mediated by carnosol.
The bioactive diterpene tanshinone IIA, isolated from Salvia mil-
tiorrhiza Bunge (Lamiaceae), has been used in the treatment of
cardiovascular and metabolic disorders [118]. eNOS uncoupling
plays a causal role in endothelial dysfunction in many cardiovas-
cular and metabolic diseases, and it was found that this natural
product acts by interacting with the NO pathway. Recently, a
study addressed to investigate its role in oxidative stress-related
signaling disclosed the effect of tanshinone IIA on the expression
of Hsp90 [118].

Limonoids
Gedunin, a tetranortritepenoid (limonoid) isolated from Indian
neem (Azadirachta indica A. Juss., Meliaceae), is well known for
its antimalarial and insecticidal activities, and has demonstrated
anticancer activity. This activity was firstly explored through the
use of the gene expression signatures, a method applied to con-
nect small molecules, genes, and diseases. With this technique,
Lamb et al., in 2006, found that gedunin exhibited its antiprolifer-
ative activity through Hsp90 modulation [119]. Later, the same
authors found that gedunin inhibited androgen receptor-mediat-
ed signaling and a gene expression-based approach was used to
predict that it acts as an Hsp90 pathway inhibitor [120]. At that
time, the only known mechanism of action of Hsp90 inhibitors
was the one demonstrated for 17-AAG and GDA at the N-terminal
ATP-binding pocket, while a new mechanism outside the N-ter-
minal was proposed for gedunin. In fact, this tetranortriterpene
was found to promote the Hsp90-dependent client protein simi-
larly to other Hsp90 inhibitors, while, contrary to the other inhib-
itors, it was unable to displace GDA in a fluorescence polarization
assay with Hsp90. In an effort to probe geduninʼs mechanism of
action, 19 semisynthetic derivatives were prepared and their
antiproliferative activity was determined. No compound was
found to be more effective than the natural compound [121] and
gedunin could be considered an Hsp90 inhibitor that didnʼt inter-
act directly with the chaperone.
Taking into account Hsp90-gedunin inhibitor activity and that li-
monoids are a relatively small group of tetranorterpenoids typi-
cal of Meliaceae, Dal Piaz et al. started a phytochemical investiga-
tion of plants belonging to this family. Extraction and chromato-
graphic separation of Trichilia emetica ssp. suberosa JJ de Wilde
and Pseudrocedrela kotschyi (Schweinf.) Harms root extracts led
to the isolation of 16 compounds. Two phragmalin limonoids,
kotschyin A and kotschyin D from P. kotschyi, interacted with the
immobilized protein by an SPR study. Among them, kotschyin D
exhibited a KD of 0.36 ± 0.04 µM, comparable to that measured for
17-DMAG (KD 0.39 ± 0.07 µM). Combining limited proteolysis and
molecular docking with biochemical and cellular studies, kot-
schyin D was demonstrated to be a client-selective inhibitor of
the chaperone, binding to the Hsp90 middle domain. Moreover,
observations on the effects of cell incubation with kotschyin D
on the level of different Hsp90 clients inferred the hypothesis that
this molecule reduces the efficiency of the chaperone towards
specific client proteins by preventing its interaction with the co-
chaperone Aha1 [122].
Recently, the same authors isolated 14 limonoids from A. indica
leaves collected in Venezuela. An SPR-based study was used to
study the interaction between these limonoids and Hsp90.
Among them, deacetylsalannin and 1,3-diacetylvilasinin showed
a capability to bind Hsp90 with an affinity higher than that ob-
tained for the 17-AAG. The results obtained showed that the
Hsp90 inhibitory effect of these limonoids is strongly related to
different structural features of the side chains [123].

Triterpenes
The quinone methide triterpene CL belongs to a small category of
plant secondarymetabolites that possess a broad range of biolog-
ical activity. It was isolated from Tripterygium wilfordii Hook. f.
(Celastraceae) root extract (Thunder God Vine), a remedy used
for inflammatory and autoimmune diseases in Oriental tradition-
al medicine [124]. Different evidences showed that in the CL
structure, carbons C-2 and C-6 on the A and Bring, respectively,
exert a high susceptibility towards a nucleophilic attack, forming
Michael adducts with nucleophilic groups of proteins. Analo-
gously to many plant molecules, this property seems to be the
major mechanism by which CL modulates the activity of a variety
of proteins [125]. Over recent years, CL has attracted many re-
searchers attention through its diverse biological activities
[126–131]. Hieronymus and coauthors, in order to investigate
the molecular target of CL, applied a gene-based expression anal-
ysis to connect its activities to other known drugs, demonstrating
that it inhibits Hsp90 functions [120]. Several investigations on
the effects of CL‑Hsp90 interaction have been successively per-
formed. The effect of CL on many Hsp90 clients, including some
kinases, was confirmed in many cancer cell line studies by differ-
ent authors, reporting the downregulation of Hsp90 clients such
as Akt-1, NF-κB, Raf-1, Cdks, ERK, EGFR, FcεRI, and PKCδ [131–
137]. Zhang and coworkers studied the effect of CL on different
transcription factors, one being the subpopulation of Hsp90 cli-
ents, in three human cancer cell lines (MCF7, HepG2, THP-1), ob-
serving the protein levels and showing that this compound af-
fects many nuclear factors in a cell-type and dose-dependent
way. CL showed a capability of blocking the binding of Hsp90
and its co-chaperones (Cdc37, P23, Hop), resulting in antitumoral
activity [125,138,139]. The molecular mechanism of the
CL‑Hsp90 interaction has been extensively investigated. Zhang
et al. studied the effect of CL on the Hsp90 interaction and ATPase
inhibition, suggesting that it binds to the N-terminal domain, and
that this is the site of Cdc37 and ATP binding [138,140]. On the
other hand, trypsinolysis studies suggested that CL binds to the
C-terminal domain of the chaperone. Some studies have reported
the inhibition of Hsp90 ATPase activity [131], while others dem-
onstrated that CL does not affect the ATPase activity of the chap-
erone [138,141]. Other authors demonstrated that CL disrupts
the Hsp90/Hop complex [142], but others stated that it has no ef-
fect on Hop [138]. Recently, Zanphorlin and coworkers, based on
these conflictual evidences, performed a characterization of the
CL‑Hsp90 interaction using both biochemical and biophysical
Dal Piaz F et al. Hsp90 Activity Modulation… Planta Med 2015; 81: 1223–1239
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techniques [143]. These authors suggested a model in which CL
binds to the C-terminal domain, causing oligomerization of the
chaperone. CL may act primarily by inducing specific oligomeri-
zation that inhibits some, but not all, of the Hsp90 functions. De-
finitively, the characterization of the CL‑Hsp90 molecular inter-
action needs further studies.
In a study focused on the observation of protein changes caused
by betulin, a representative triterpene of Betula platyphylla Su-
kaczev (Betulaceae), Pyo et al. demonstrated that Hsp90 was
downregulated in betulin-treated human lung cancer A549 cells.
They also confirmed that betulin induced apoptosis by up/down-
regulations of different proteins by means of 2D SDS PAGE
coupled with nano-HPLC tandem mass spectrometry [144].
Triterpenes have been identified as the major active constituents
of Patrinia heterophylla Bunge (Valerianaceae), a native herb to
China used as an antitumor herb in traditional Chinese medicine.
To elucidate the antitumor mechanism of these compounds, a
proteomic analysis was carried out by TPH treatment in K562
cells. According to their previous phytochemical analysis, heder-
agenin, friedelin, ursolic acid, oleanolic acid, canophyllol, olea-
nolic acid 3-O-α-L-arabinopyranoside, α-amyrin, and β-amyrin
are the main components of TPH [145]. The authors found that
TPH downregulated the expression of Hsp90α in K562 cells, so
triterpenes could be responsible of this activity, but further in-
vestigations are needed to explain these evidences [146].
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Alkaloids
!

The wide range of biological activities shown by alkaloids en-
couraged researchers to evaluate their effects on Hsp90 activity
and/or expression in tumor cells in order to identify new potent
and multitarget compounds. Promising results have been
achieved by some bis-coclaurine alkaloids such as CEP and BBM.
Using different chromatographic approaches, Haginaka and cow-
orkers [147] demonstrated that CEP, an alkaloid mainly extracted
from Stephania cepharantha Hayata (Menispermaceae) and
widely used in Japan to treat several diseases [148], interacts
with the Hsp90 middle domain, and a 5.3 µM dissociation con-
stant was measured for this interaction. These authors also ob-
tained a similar result investigating the Hsp90 interaction with
BBM, purified from several plants belonging to the Berberis genus
(Berberidaceae), and reported it as promising anticancer agent
[149–152]. Moreover, it was also demonstrated that BBM treat-
ments induce leukemia cell apoptosis, interfering with different
metabolic pathways and significantly reducing the Hsp90 intra-
cellular levels [153].
An efficient interaction with the Hsp90 middle domain was also
observed for lentiginosine [154], a hydroxylated indolizidine al-
kaloid originally extracted from the leaves of Astragalus lentigi-
nosus Douglas ex Hook (Fabaceae) and described as a potent in-
hibitor of the fungal α-glucosidase amyloglucosidase [155]. A
multidisciplinary study demonstrated that the binding of this
iminosugar to the chaperone is enantioselective, with only the
(+)-lentiginosine being able to interact with Hsp90 with a high
affinity (KD = 24.76 ± 0.60 nM); besides, it was able to signifi-
cantly affect chaperone and ATPase activities of the protein in vi-
tro [154].
Dal Piaz F et al. Hsp90 Activity Modulation… Planta Med 2015; 81: 1223–1239
Miscellaneous
Gambogic acid, a component of the exudate of Garcinia harburyi
Hook. f. (Clusiaceae), has been demonstrated to possess antitu-
mor and anti-inflammatory activities and has entered phase I
clinical trials in China as an anticancer agent [156]. This com-
pound was firstly shown to interact with Hsp90 in 2010. In fact,
gambogic acid inhibits HeLa cell proliferation with an IC50 of
0.69 ± 0.22 µM, which correlates with the downregulatation of
the TNF-α/NF-κB signaling pathway [157]. Later, a high-through-
put screening of a natural product library for the discovery of
new Hsp90 inhibitors identified gambogic acid as an antitumor
agent that binds to the N-terminal domain of Hsp90 [158]. In this
study, gambogic acid emerged for its ability to inhibit the Hsp90-
dependent refolding of luciferase. Biological assays on gambogic
acid displayed its ability to inhibit the proliferation of different
cancer cell lines (HeLa, MCF7, and SK‑Br3) in a concentration-de-
pendent manner, and induced degradation of Hsp90-dependent
proteins Her2, Akt, and Raf-1 in cultured cells [158]. This promis-
ing anticancer agent also disrupted the interaction of Hsp90,
Hsp70, and Cdc 37 with the HRI in vitro. In addition, by SPR anal-
ysis and virtual docking approaches, Davenport and coworkers
indicated that gambogic acid binds to the N-terminal domain of
Hsp90, and it is not able to displace GDA, suggesting its interac-
tion with a distinct binding site on the Hsp90 N-terminal pocket
[158].
Conclusions
!

In this review, plant molecules interfering with Hsp90 activities
(l" Table 1) and outlining findings on their molecular interaction
with the chaperone are presented. The identification of new
compounds to modulate Hsp90 activities is still a crucial chal-
lenge for biomedical research. In the last ten years, many putative
Hsp90 inhibitors have been reported, including natural com-
pounds, but actually only a limited number of plant secondary
metabolites showing promising effects have been described.
However, many of these plant compounds inhibit Hsp90 by
mechanisms definitively different from those demonstrated for
the classic inhibitors interacting with the Hsp90 ATP binding site;
this is the case of the prenylated isoflavone derrubone, the terpe-
noids kotshin D and CL, and the alkaloids CEP and lentiginosine.
In fact, the first is able to over-stabilize the binding between the
chaperone and some of its clients, the second prevent the inter-
action of Hsp90 with its co-chaperones Aha1 (kotshin D), Cdc37,
P23, and Hop (CL), while the third bind the Hsp90 middle do-
main, thus affecting its interaction with several client proteins,
respectively. The peculiarity of the mechanism of action demon-
strated by these compounds makes them suitable leads for the
design of new therapeutic agents, or chemical probes allowing
for the in-depth study of the biochemistry of Hsp90, a chaperone
machinewhich plays a key role in many pathological and physio-
logical processes.
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Table 1 Plant secondary metabolites interfering with Hsp90 activities.

Compound Structure Origin References

Aloe-emodin Aloe vera (L.) Burm. f. (Aloaceae) [93,94]

Andrographolide Andrographis paniculata (Burm. F.)
Wall. Ex Nees (Acanthaceae)

[109–114]

Apigenin Asteraceae family [14–19]

Argenteoside A Tabebuia argentea Britt.
(Bignoniaceae)

[104]

Argenteoside B Tabebuia argentea Britt.
(Bignoniaceae)

[104]

Berbamine Berberis ssp. (Berberidaceae) [149–153]

Betulin Betula platyphylla Sukaczev
(Betulaceae)

[144]

cont.
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Table 1 Continued

Compound Structure Origin References

Butein Semecarpus anacardium L., Caragana
jubata Pall., Rhus verniciflua Stokes
(Anacardiaceae), Dalbergia odorifera
T. Chen (Fabaceae)

[55–64]

Carnosol Rosmarinus officinalis L. (Lamiaceae) [116,117]

Catalposide Tabebuia argentea Britt.
(Bignoniaceae)

[104]

Celastrol TripterygiumwilfordiiHook.f.
(Celastraceae)

[124–143]

Cepharanthine Stephania cepharantha Hayata
(Menispermaceae)

[147,148]

Chrysin Passiflora ssp. (Passifloraceae) [20–25]

Deacetylsalannin Azadirachta indica A. Juss. (Meliaceae) [123]

Derrubone Derris robusta (Roxb ex DC) Benth
(Fabaceae)

[47–54]

1,3-Diacetylvilasinin Azadirachta indica A. Juss. (Meliaceae) [123]

cont.
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Table 1 Continued

Compound Structure Origin References

3,4-Dihydrocatalposide Catalpa bignonioidesWalter
(Bignoniaceae)

[104]

17-DMAG Semisynthetic derivative [12,13]

β-Elemene CurcumawenyujinY.H. Chen&C. Ling
(Zingiberaceae)

[107]

(−)-Epicatechin Camellia sinensis (L.) Kuntze
(Theaceae)

[86]

(−)-Epigallocatechin-3-gal-
late

Camellia sinensis (L.) Kuntze
(Theaceae)

[54,79–85]

Eupatilin Artemisia asiaticaNakai (Asteraceae) [26,27]

Flavokawain B Piper methisticum (L.) G. Forst
(Piperaceae), Alpinia pricei Hayata
(Zingiberaceae)

[65–73]

Gambogic acid Garcinia harburyiHook.f. (Clusiaceae) [156–158]

Gedunin Azadirachta indica A. Juss. (Meliaceae) [119–121]

cont.
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Table 1 Continued

Compound Structure Origin References

GDA Streptomyces hygroscopicus [12,13]

Geraniin Geranium thunbergii Siebold ex Lindl.
& Paxton (Geraniaceae)

[96–102]

GUT-70 Calophyllum brasiliense Britton
(Calophyllaceae)

[90,91]

6-O-p-Hydroxybenzoyl-5,7-
bisdeoxycynanchoside

Catalpa bignonioidesWalter
(Bignoniaceae)

[104]

2′′-Hydroxygenkwanol A Daphne linearifolia (Hart.)
(Thymelaeaceae)

[88]

Kotschyin A Pseudrocedrela kotschyi (Schweinf)
Harms (Meliaceae)

[122]

cont.

1234

Dal Piaz F et al. Hsp90 Activity Modulation… Planta Med 2015; 81: 1223–1239

Reviews

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



Table 1 Continued

Compound Structure Origin References

Kotschyin D Pseudrocedrela kotschyi (Schweinf)
Harms (Meliaceae)

[122]

Lentiginosine Astragalus lentiginosus Douglas ex
Hook. (Fabaceae)

[154,155]

Licochalchone A Glycyrrhiza inflate Batalin (Fabaceae) [74–78]

Luteolin Many plants and vegetables [28–35]

Novobiocin Streptomyces niveus [89]

Oleocanthal Olea europaea L. (Oleaceae) [105,106]

Picrocrocin Crocus sativus L. (Iridaceae) [103]

Quercetin Many plants and vegetables [36–46]

Radicicol Penicillium luteo-aurantium [12,13]

Rhein Cassia alata L. (Fabaceae) [95]

cont.
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Table 1 Continued

Compound Structure Origin References

Specioside Tabebuia argentea Britt.
(Bignoniaceae)

[104]

Tanshinone II A Salvia miltiorrhiza Bunge (Lamiaceae) [118]

Teucrin A Teucrium chamaedrys L. (Lamiaceae) [115]

Zerumbone Zingiber zerumbet Smith
(Zingiberaceae)

[108]
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