
Abstract
!

This article reviews the current progress and re-
search indications in the application of natural
plant compounds with the potential for the treat-
ment of cardiovascular diseases. Our understand-
ing of how to apply natural plant compounds to
enhance mechanisms of inherited cardiac regen-
eration, which is physiologically pertinent to my-
ocyte turnover or minor cardiac repair, for sub-
stantial cardiac regeneration to repair pathologi-
cal heart injuries is discussed. Although signifi-
cant progress has been made in the application
of natural plant compounds for therapy of heart
diseases, the understanding or the application of

these compounds specifically for enhancing
mechanisms of inherited cardiac regeneration for
the treatment of cardiovascular diseases is little.
Recent recognition of some natural plant com-
pounds that can repair damaged myocardial tis-
sues through enhancing mechanisms of inherited
cardiac regeneration has offered an alternative for
clinical translation. Application of natural plant
compounds, which show the activity of manipu-
lating gene expressions in such a way to enhance
mechanisms of inherited cardiac regeneration for
cardiac repair, may provide a promising strategy
for the reconstruction of damaged cardiac tissues
due to cardiovascular diseases.
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Introduction
!

Cardiovascular disease (CVD) is a class of diseases
causedmainly by disorders of the heart and blood
vessels, including coronary heart disease (CHD),
congenital heart disease, arrythmias, heart fail-
ure, cardiomyopathy, aorta disease, and peripher-
al artery disease [1,2]. CVD is the leading cause of
death around the world. Due to worldwide popu-
lation growth and an increasing elderly popula-
tion, the death toll of CVD increases each year
and is estimated to reach 23 million by 2030 ac-
cording to the World Health Organization [3].
Among all types of CVD, CHD is the most common
one that accounts for one-third of the total CVD-
related deaths [4]. CHD results from partial or
complete occlusion of the coronary artery and
subsequent cardiac ischemia in the affected terri-
tory. Complete occlusion of the coronary artery
leads to amassive loss of cardiac tissues, including
cardiac myocytes and coronary vasculature in the
distribution territory of the affected artery [5,6].
Conventional treatments for CHD, including med-
ication (e.g., beta-blockers, diuretics, etc.) and
surgical intervention (e.g., angioplasty, coronary
Zh
artery bypass grafting), can only alleviate symp-
toms and slow down the deterioration of the dis-
ease without pathological modifying effects [7].
Although heart transplantation may serve as a fi-
nal resort for end-stage heart failure patients, it is
not only costly, but also limited by donor avail-
ability and host immune rejection. Recent strik-
ing advances in stem cell research and regenera-
tion medicine have provided the hope for thera-
peutic cardiac repair through cell transplanta-
tion-based strategies. Stem cells of particular in-
terest include embryonic stem cells (ESCs) [8,9],
induced pluripotent stem cells (iPS) [10,11], bone
marrow-derived mesenchymal stem cells (MSCs)
[12,13], and umbilical cord blood cells [14,15].
However, there is still a long way to go before the
successful clinical translation of stem cell trans-
plantation-based therapy due to the yet to be
solved drawbacks and complications, including
host immune rejection, risk of tumorigenesis,
and low cardiogenic efficiency.
Thus, searching for alternative strategies for an ef-
fective treatment of CVD has attracted increasing
research interest, especially following the recent
discovery of the inherited ability of heart regener-
ou Z et al. Plants and Their… Planta Med 2015; 81: 637–647
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ation in the adult mammalian heart [16–19]. With the growth of
our understanding, it was soon realized that mechanisms of in-
herited cardiac regeneration pertinent to heart homeostasis and
possible minor cardiac injury repair are far from effective for the
repair of pathological damages of the heart [14,15]. Nonetheless,
the realization of this limitation hints for an alternative strategy
for substantial treatment of CVD through enhancing the inher-
ited cardiac regeneration ability. This review is dedicated to the
emerging research topic on how natural plant compounds can
be used to enhance mechanisms of inherited cardiac regenera-
tion for effective treatment of injured hearts due to CVD.
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Mechanisms of Inherited Cardiac Regeneration
!

Cardiac regeneration capacity is largely retained throughout the
lifespan in lower vertebrates, such as amphibians and fish [20–
22]. By contrast, mammals still retain some cardiac regeneration
capacity at their neonatal stage, which is then lost shortly after
birth [23]. The classic dogma that the adult mammalian heart is
a post-mitotic organ without renewal ability has preset the field
for decades [24,25]. However, this traditional view has been chal-
lenged by increasing new research findings that the adult mam-
malian heart still contains limited renewal ability. BrdU incorpo-
ration experiment in a rat model demonstrated a descending
trend of BrdU positive cells in the heart throughout the whole life
span from ~ 37% on day 3 to ~ 11% on day 5, ~ 5% on day 13 after
birth, and 0.2 ~ 2% in an adult [26].
Growing data supporting this new concept that the adult mam-
malian heart contains limited renewal ability have been docu-
mented for human hearts [27,28]. Using incorporated 14C in
DNA obtained from human adult hearts, Bergmann et al. pro-
vided direct evidence that human adult myocytes continue to re-
generate during the whole lifetime, though the capacity for myo-
cyte regeneration decreases with age [29]. It was soon found that
a subpopulation of replicating myocytes was preserved in the
postnatal, adult, or senescent heart with the ability of repopulat-
ing parenchymal myocytes [27,30–33]. The existence of cardiac
resident stem cells (CSCs), in line with stem cell criteria of self-re-
newing, clonogenic, multipotent, giving rise to myocytes, smooth
muscle, and endothelial cells, was demonstrated [34–39]. These
identified CSCs were further grouped according to their surface
markers, such as c-kit, Sca-1, Isl1, and MDR1 positive cells. Of
them, the c-kit and Sca-1 positive CSCs were identified as the
predominant CSC subpopulations in the heart stem cell pool [35,
36,40]. These CSCs are likely involved in the cell turnover-medi-
ated cardiac cell (e.g., myocytes, smooth muscle cells, and vessel
endothelial cells) replacement and possible cardiac minor repair
during myocardial homeostasis [31,33,35,36,40,41]. Consistent
with this notion, the number of CSCs increased significantly in
response to myocardial infarction (MI) [42] and the application
of c-kit-positive CSCs produced a substantial engraftment and re-
generated cardiac tissues in an MI animal model [31,43]. In the
physiological condition of human adult life, the death rate of my-
ocytes during cardiac homeostasis accounts for the loss of
~ 3 × 106 myocytes per day, which is putatively a close match to
that of regenerated myocytes through mechanisms of inherited
cardiac regeneration [15]. Unfortunately, this ability to repopu-
late the lost myocytes during cardiac homeostasis is severely lim-
ited in pathological cardiac repair [15]. Therefore, maneuvers to
enhance mechanisms of inherited cardiac regeneration would
accomplish the aim for substantial treatment of CVD.
Zhou Z et al. Plants and Their… Planta Med 2015; 81: 637–647
Plant Compounds Used to Enhance Cardiac
Angiogenesis and Myocardial Regeneration
!

As aforementioned, current available strategies for the treatment
of CVD, including drugs, surgical interventions, and cell trans-
plantation-based therapies, have their innate limitations, some
of which even cause severe or life-threatening complications.
Therefore, the development of more effective and safer strategies
for substantial treatment of CVD is highly desirable. In light of the
newly discovered mechanisms of inherited cardiac regeneration
and the realization of its low efficiency in pathological cardiac re-
pair, it is reasonable to postulate that maneuvers that can en-
hance mechanisms of inherited cardiac regeneration could po-
tentially achieve pathology-modifying and functional repair of
diseased heart.
To potentiate such repair of a diseased heart, the creation of an
inductive microenvironment for cardiogenesis in the territory is
a corequisite [15]. The requirement of an inductive microenvir-
onment for cardiogenesis, such as timely delivery of oxygen, nec-
essary nutrients, variants of growth factors, and circulating stem
cells to the territory, must be satisfied in order for cell trafficking,
survival, growth, and differentiation in the previously deprived
region. Therefore, rapid reconstitution of the damaged vascula-
ture in the territory is primarily vital for the creation of such an
inductive microenvironment for any myocardial regeneration.
For substantial repair of acute cardiac injury, such as MI, replace-
ment of the dead cardiac tissues with newly regeneratedmyocar-
dium is a therapeutic ideal. Only under such an aforementioned
cardiogenesis-inductive microenvironment may myocardial re-
generation be fulfilled through enhanced (i) proliferation and dif-
ferentiation of resident CSCs; (ii) or/and cardiogenic differentia-
tion of bone marrow-derived circulating stem cells that migrate
to the site of damage; (iii) transient dedifferentiation and prolif-
eration of terminally differentiated myocytes under defined con-
ditions.
One such maneuver that can help create such a cardiogenesis-in-
ductive microenvironment and promote cardiogenesis is natural
plant compounds with known functions, such as traditional Chi-
nese medicinal herbs that are related to cardiac regeneration.
Although this is an emerging research field, several research
teams, including our laboratory, have already made significant
progress with promising findings. Listed below are several such
examples of these natural plant compounds with potential for
substantial cardiac regeneration.
The Beneficial Effects of Rehmannia glutinosa on
Cardiac Angiogenesis and Cardiogenesis
!

Rehmannia glutinosa (R. glutinosa, also known as Dihuang), a
member of the Scrophulariaceae family, is a well-known tradi-
tional Chinese medicine widely used in Asian societies [44]. The
safety of R. glutinosa administration has been proven by its prac-
tice in traditional medicine over thousands of years. Due to its
beneficial effects on Yin and the kidney, R. glutinosa has been
used commonly for the treatment of diseases associated with hy-
podynamia. In the last several decades, studies have shown that
R. glutinosa has multiple functions in the cardiovascular system
[45,46], though the underlying molecular mechanisms are yet to
be revealed.
Some research results demonstrated that R. glutinosa extract
(RGE) may exert its specific effect on hematogenesis in mice by
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enhancing proliferation and differentiation of bone marrow-de-
rived hematopoietic stem cells [47]. Other recent studies re-
ported that the oral administration of RGE (1–1.5 g/kg/day) to
MI model rats not only increased the quantities of endothelial
progenitor cells (EPCs), potential targets for cardiac repair, both
in blood and in bone marrow, but also promoted their mobiliza-
tion to peripheral blood, migration to injured heart tissues, and
activation of their function for angiogenesis [48]. It was further
found that RGE (25–50 µg/ml culture medium) could also stimu-
late EPC proliferation, migration, and capillary-like tube forma-
tion, probably through the activation of the stromal-derived fac-
tor-1α/receptor (SDF-1α/CXCR4) cascade [48].
Other angiogenesis-associated factors, such as vascular endothe-
lial growth factor receptor 2 (VEGFR2) and CD133 (a hematopoi-
etic stem and progenitor cell marker), were also upregulated by
RGE. These properties of RGE may help create a cardiogenesis in-
ductive microenvironment in the territory of cardiac damage that
favors the ensuing myocardial regeneration.
In addition to the potential angiogenic effect of RGE, the activity
of RGE in the prevention of caspase-3 activation-induced cardiac
myocyte death in vitro, probably by increasing Bcl-2 expression
and inhibiting Bax expression, was also suggested [49]. More im-
portantly, RGE treatment could lead to significant functional im-
provement in the chronic stage after acute MI including an in-
creased left ventricle eject fraction, a reduced ischemic area, and
a decreased apoptotic index in the infarct myocardium. Despite
the fact that the chemical compositions of RGE await further clar-
ification, these findings render RGE a promising candidate for
further drug development towards the treatment of CVDs.
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The Multi-Beneficial Effects of Ginseng on
Cardiovascular Disease
!

Ginseng, a member of the Araliaceae family, is one of the most
well-known and wildly used herbal medicines around the world.
It is routinely used for the general human well-being and is con-
sidered to have multi-beneficial effects on pathological condi-
tions and diseases related to the immune system, endocrine sys-
tem, central nervous system, and cardiovascular system [50–52].
During the past few decades, an increasing application of ginseng
has been observed not only in oriental society, but also in West-
ern countries. There are various species of ginseng, among which
Asian ginseng (Panax ginseng) and North American ginseng (Pan-
ax quinquefolius) are the twomajor ones [53,54]. Ginseng report-
edly contains multiple active constituents, including ginseno-
sides, quinquefolans, polysaccharides, pyridoxine, and fatty acids
[55]. Among them, ginsenosides are considered to be the main
active compounds that are attributed to the multi-beneficial ef-
fects of ginseng [54,56]. Ginsenosides are a special group of tri-
terpenoid saponins that are found almost exclusively in Panax
species (ginseng), and up to now, more than 150 naturally occur-
ring ginsenosides have been isolated from roots, leaves/stems,
fruits, and/or flower heads of ginseng. The protopanaxadiol (e.g.,
Ra1 and Rb1) and protopanaxatriol groups (e.g., Rg1 and Re) are
the two main groups of ginsenosides (l" Fig. 1a,b). The consider-
able variety of ginsenosides and their multiple functions make it
hard to dissect out their individual functions. Nevertheless, ex-
tensive investigations of several major ginsenosides were per-
formed, owing to a renewed interest in exploring the mechanis-
tic nature underlying ginsengʼs beneficial effects for possible nov-
el drug development.
Rg1, one of the most active compounds isolated from ginseng,
has attracted many research interests. In vitro studies on human
umbilical vein endothelial cells (HUVECs) demonstrated that Rg1
treatment significantly promoted the migration, proliferation,
and capillary-like tube formation of the cultured HUVECs [57–
59]. Downregulation of microRNA-214 and microRNA-15b,
which in turn leads to increased VEGFR-2 expression, was sug-
gested to underlie Rg1-induced angiogenesis [60,61]. Consistent
with these in vitro results, some in vivo studies demonstrated
that Rg1 could improve cardiac function, reduce infarct size, and
increase capillary density in the infarct area of a rat MImodel and
in a transverse aortic constriction-induced left ventricular hyper-
trophy model, probably through upregulating expressions of vas-
cular endothelial growth factor (VEGF), CD31, and hypoxia indu-
cible factor-1α (HIF-1α) [62,63]. Moreover, further in vitro stud-
ies found that Rg1 exerted a significant effect on preventing apo-
ptosis [62,63]. Consistent with these findings, it was reported
that Rg1 could reduce apoptosis of cultured H9c2 cardiomyocytes
[64] and dose-dependently increase cell viability in a cardiomyo-
cyte hypoxia/reoxygenation model [65].
Rb1, another major ginsenoside isolated from ginseng, also
showed a protective effect of cardiomyocytes from apoptosis
[66–68]. Some studies indicated that the PKA signaling pathway
and caspase-9 pathway might be involved in an Rb1-mediated
antiapoptotic effect [69]. Many other investigations withmyocar-
dial remodeling, cardiac ischemia and reperfusion, angiogenesis,
and cardiomyopathy animal models also consistently demon-
strated the cardiovascular beneficial effects of Rg1 and Rb1 [70–
73]. Therefore, it would be highly rewarding to investigate
whether ginsenosides can enhance cardiogenesis in the adult
mammalian heart under both physiological and pathological
conditions.
The Application of Salvia miltiorrhiza Bunge
and its Isolated Compounds for the Treatment
of Cardiovascular Disease
!

Salvia miltiorrhiza Bunge (S. miltiorrhiza Bunge, Danshen in Chi-
nese), a member of the Labiatae family, is extracted from the
dried root of a perennial plant, S. miltiorrhiza Bunge, and is
widely used for promoting blood circulation and removing blood
stasis in Chinese herbal medicine practice. Cardiovascular benefi-
cial effects of S. miltiorrhiza Bunge whole extract have been
studied extensively. These studies showed that S. miltiorrhiza
Bunge could promote angiogenesis, protect cardiomyocytes
against ischemia-induced apoptosis, and enhance the transdiffer-
entiation of MSCs into cardiomyocytes [74–78]. Due to its various
cardiovascular beneficial effects, S. miltiorrhiza Bunge has been
commonly used for the clinical treatment of CVD in China.
To date, more than 80 chemical components, including water-
soluble phenolic acids and lipophilic tanshinones, have been
identified and isolated from S. miltiorrhiza Bunge [78,79]. The
main lipophilic compounds from S. miltiorrhiza Bunge include
tanshinone I (tan I), tanshinone IIA (tan IIA), tanshinone IIB (tan
IIB), and cryptotanshinone, while the major hydrophilic com-
pounds include salvianolic acid A, salvianolic acid B, danshensu,
and protocatechuic aldehyde.
Tan IIA (l" Fig. 1c) is one of the most abundant and active lipo-
philic diterpenes found in S. miltiorrhiza Bunge. Multiple benefi-
cial effects of tan IIA, including antioxidant, anti-inflammatory,
antiapoptosis, and proangiogenic effects, have been demonstrat-
Zhou Z et al. Plants and Their… Planta Med 2015; 81: 637–647



Fig. 1 Chemical structures of the cited com-
pounds isolated, respectively, from ginsenosides,
S. miltiorrhiza Bunge and G. japonicum Thunb. vax.
chinense F. Bolle.
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ed [80,81]. As a result, tan IIA has long been used effectively to
prevent and treat various CVD clinically in China. Although the
precise mechanisms underlying the effects of tan IIA await more
detailed and systematic experimental and clinical studies, recent
studies have started to uncover some interesting beneficial ef-
fects of tan IIA on the cardiovascular system.
It has been found that tan IIA can improve the local microenvir-
onment of a damaged heart area through promoting angiogene-
sis. Studies using rat MI models showed that administration of
tan IIA resulted in improved cardiac function, reduced infarct size
presumably through upregulating VEGF expression, and conse-
quent angiogenesis [82]. Further studies also consistently dem-
onstrated that treatment of acute MI animals with a water-solu-
ble derivative of tan IIA, sodium tan IIA sulfonate (l" Fig. 1d), sig-
nificantly reduced the infarct size and decreased the number of
apoptotic cardiomyocytes in the infarct zone [83].
In a heart failure rat model induced by thoracic aorta constric-
tion, tan IIA injection for 12 weeks decreased myocardial apopto-
sis, assessed by the TUENL method, likely through upregulating
the mRNA and protein levels of Bcl-2 and miR-133 [84]. Regula-
tion of miR-133 levels by tan IIA was further confirmed in cul-
tured neonatal cardiomyocytes under hypoxic condition showing
Zhou Z et al. Plants and Their… Planta Med 2015; 81: 637–647
that tan IIA treatment increased the miR-133 level by activating
the MAPK ERK1/2 pathway [85]. Using both in vitro and in vivo
studies, Fu et al. showed that tan IIA could protect myocytes
against apoptosis triggered by oxidative stress involving Bcl-2
regulation [80]. The mechanism underlying the action of tan IIA
in preventing cardiac apoptosis is presumably via regulation of
the ratio of Bcl-2/Bax [86] and downregulating of the miR-1 level
[87,88].
Interestingly, recent evidences indicated that tan IIA could also
enhance the migration of bone marrow MSCs to the infarct re-
gion followingMI [89,90]. As mentioned above, both endogenous
and transplanted MSCs can improve cardiac functions after MI,
though with limited efficacy, by transdifferentiation into cardio-
myocytes directly and/or through the paracrine mechanism indi-
rectly. Tong et al. showed that combination treatment of tan IIA
and MSCs in a rat MI model exhibited better effects than that
with MSCs alone in terms of infarct size reduction and cardiac
function improvement [89]. Tan IIA treatment significantly in-
creased the number and the survival rate of MSCs in the infarct
region, likely through the upregulation of the SDF-1/CXCR4 axis,
which is essential for tan IIA to enhance the recruitment of MSCs
to the infarct zone [89]. Consistent with this finding, using both
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in vitro experiments and a rat acute MI model, Xie et al. [90] re-
ported that treatment of tan IIA and astragaloside IV (l" Fig. 1e)
could promote the migration and homing of exogenous MSCs to
the ischemic region, at least partially, through the upregulation
of CXCR4 expression.
Besides tan IIA, some other compounds isolated from S. miltior-
rhiza Bunge also showed cardioprotective activities. For example,
salvianolic acid A and salvianolic acid B (l" Fig. 1 f,g) could en-
hance angiogenesis both in vitro and in rat MI models [91–93].
Mechanistic studies in a rat MI model showed that salvianolic ac-
id A enhanced ischemia-induced angiogenesis, likely by upregu-
lating VEGF and VEGFR-2 levels, and promoting the migration
and vasculargenesis of EPCs [91]. Recent studies further indicated
that the extract of S. miltiorrhiza Bunge not only promoted angio-
genesis and protected cardiomyocytes against ischemia-induced
apoptosis, but also enhanced the transdifferentiation of MSCs in-
to cardiomyocytes [74–78] and myocardial regeneration in the
infarct zone in MI animal models (authorsʼ unpublished data).
Although S. miltiorrhiza Bunge has been commonly used for the
treatment of CVD based on its various cardiovascular beneficial
effects, the dissection of the effect of individual compounds of S.
miltiorrhiza Bunge remains to be elucidated due to the complex-
ity of its extract.
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Potentiating Mechanisms of Inherited Cardiac
Repair for the Treatment of Cardiovascular Disease
by Geum japonicum
!

Several recent studies have demonstrated that an organic extract
of Geum japonicum Thunb. vax. chinense F. Bolle (EGJ) exerted
dual actions on angiogenesis and myogenesis leading to the sub-
stantial repair of infarct hearts and damaged muscles in animal
models [13,94,95]. Two active fractions (Angio-T & AFGJ), iso-
lated from EGJ, showed remarkable activities in promoting the
growth of coronary collateral vessels in CHD rat models [96,97].
The most significant merits of these studies are the clear demon-
strations of the types, densities, and distribution of the newly
grown coronary collaterals in the ischemic heart [97]. The results
showed that AFGJ, which is mainly comprised of polyphenols,
could significantly induce the growth of small coronary arteries,
including arterioles (21–63 µm) and microarteries (63–210 µm),
in ischemic hearts. The densities of the arterioles and the micro-
vesesles in the hearts of AFGJ-treated animals were significantly
higher than those in the hearts of the vehicle-treated group
(* p < 0.05; l" Fig. 2A,B) [97]. However, the densities of vessels
(with diameters less than 21 µm or greater than 210 µm) showed
no significant difference between the two groups. The 2D evalua-
tion of the unit area of vessels in ROI showed that the average
density of vessels of AFGJ-treated hearts was significantly higher
than that of the vehicle-treated hearts (*** p < 0.001). More inter-
estingly, quantitative volumetric measurements of heart vascular
angiogenesis demonstrated that both the values of vascular vol-
ume (VV) and total volume (TV) in AFGJ-treated ischemic hearts
Fig. 2 MicroCT-based quantitative analysis (n = 6).
A The distribution of different diameters of vessels.
B Representative 2D evaluation of the unit area of
vessels in ROI that was derived from 125 data sets of
500 slices. C Quantitative volumetric measure-
ments of heart vascular angiogenesis. The left y-axis
represents the vascular volume (VV) of the ischemic
area.D Quantitativemeasurement of AFGJ-induced
therapeutic angiogenesis represented as vessel
branching points ([97], with the permission of the
authors). (Color figure available online only.)

Zhou Z et al. Plants and Their… Planta Med 2015; 81: 637–647
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were significantly increased compared with those in the vehicle-
treated hearts (* p < 0.05), and were virtually close to those of the
nonischemic hearts in the sham operated group (mean: 10.754
vs. 11.020 and 0.024 vs. 0.027), indicating that AFGJ treatment ef-
fectively reconstituted the lost coronary vessels due to infarction,
especially the microvessels in the ischemic region of the hearts
(l" Fig. 2C). More importantly, an analysis of a number of inter-
sections between vessel and non-vessel components per total
length (vb. N) of vessels in volume of interest (VOI), which can
provide information on vessel branching points, demonstrated
that substantially more branching points in the AFGJ-treated
heart compared with those in the vehicle-treated heart (mean ±
SEM: 0.9392 ± 0.07615 vs. 0.6462 ± 0.1036; * p < 0.05), implying
the formation of new substantial collateral vessels in AFGJ-treat-
ed ischemic hearts (l" Fig. 2D). Both the quantitative MicroCT
and quantitative histological analysis results consistently demon-
strated the significantly increased vascular density and collateral
branching points in the ischemic region of AFGJ-treated hearts.
MicroCT analysis also provided visible evidence of the vascular
network of the experimental hearts.
Taken together, AFGJ appears to promote therapeutic angiogene-
sis through the induction of growth of new coronary collaterals
(with diameter 0.021–0.21mm) in adult ischemic hearts. AFGJ-
induced growth of new collaterals in ischemic hearts is of thera-
peutic significance evidenced by the improved functional per-
formance of the CHD hearts. More importantly, AFGJ-induced
growth of coronary collaterals into the ischemic region of CHD
hearts should address the root pathology of the disease and pro-
vide a novel therapeutic method for effective/curative treatment
of chronic CHD.
In addition to the effect of EGJ or AFGJ on the stimulation of sub-
stantial growth of coronary collateral vessels in ischemic hearts,
several other studies also demonstrated that another active frac-
tion identified/isolated from EGJ showed the property in stimu-
lating myocardial regeneration in an acute MI animal model
through topical injection (0.3mg) or intragastric administration
(300–500mg/kg body weight) [13,94,98,99]. These findings
prompted further investigations for the identification and isola-
tion of the active component from the fraction and demonstra-
tion of the activity of the active component. Consequently, a car-
diogenic compound (i.e., cardiogenin; l" Fig. 1h) was isolated
from the active fraction with activities in enhancing cardiogenic
differentiation efficiency of MSCs and regenerating myocardial
tissues in MI animal models [13,98,99]. These remarkable results
showed that both the active fraction and cardiogenin can pro-
mote cardiogenic differentiation of MSCs in culture with approx-
imately 40–50% of the culturedMSCs elongated, forming rod-like
phenotypes with MEF2 (3-day treatment) or MHC (7-day treat-
ment) positively stained. More importantly, the indication of the
effect of the active fraction or cardiogenin in promoting cardio-
genic differentiation of MSCs in vitro can be translated into re-
generation of a substantial amount of myocyte-like cells with co-
localized ki67 positive nuclei and MHC positive cytoplasm ob-
served throughout the whole infarct region in vivo, which should
contribute to the significantly improved cardiac function [13,99].
These newly regeneratedmyocytes replaced the dead cardiac tis-
sues. Computated planimetric analysis demonstrated that the
scar area of the hearts in the active fraction or cardiogenin-treat-
ed MI hearts were approximately 11⁄44–11⁄22 smaller than that in the
vehicle-treated rats (p < 0.01).
The identification of male cardiac cells in female donor hearts,
which were transplanted to male recipients, raised the thought
Zhou Z et al. Plants and Their… Planta Med 2015; 81: 637–647
that these male cardiac cells might be the progeny of circulating
stem cells of the recipientʼs bone marrow origin [100,101]. Some
recent studies have also shown agreeable evidences for the active
participation of bonemarrow-derivedMSCs inmyocardial regen-
eration [13,96,99]. In these studies, it was found that although
bone marrow-derived MSCs can migrate to the infarct zone after
acute MI, their cardiogenic differentiation efficiency is too low to
produce meaningful repair to the damaged heart. The experi-
ment using cardiogenin to treat MI rats that were subjected to
bone marrow transplantation of labeled MSCs prior to MI prod-
uction provided evidence that considerable bone marrow-de-
rived MSCs participated in myocardial regeneration [13,96,99].
Many vessels (yellow-circled) and DiI- (orange-labeled cyto-
plasm)MEF2 (red-stained nuclei) colocalized cells (green-circled)
were observed throughout the infarct zone (l" Fig. 3). Some of the
myocyte-like cells in the central infarct zone (blue arrows), which
were positively stained by both Ki67 (nuclei) and MHC (cyto-
plasm), were found with some of Ki67 positive nuclei of the ves-
sel endothelial cells observed (green arrows). The normal myo-
cytes along the infarct rim were MHC positive, but Ki67 negative
(red circles). Some of the regenerating myocytes joined together
in tandem forming myocardium-like tissue (blue arrows). The
importance of these studies is the demonstration that endoge-
nous MSCs could be an important progenitor cell pool for regen-
eration of new myocardium on the condition that their cardio-
genic differentiation potential is triggered. The supreme weight
of using natural plant compounds to potentiate mechanisms of
inherited cardiac repair for treatment of cardiac damage in these
studies is that activation of endogenous stem cells by natural
plant compounds for repair of impaired hearts would eliminate
the possible teratoma formation, immunorejection reaction, and
many other possible complications that are associated with the
use of ESCs or other exogenous progenitor cells [102–105]. The
mechanistic study indicated that cardiogenin or the active frac-
tion derived from EGJ may interact with G proteins initially,
which subsequently trigger the sequential cascade of cardiogenic
differentiation-associated intracellular events, such as suppres-
sion of miRNA-9 expression, which consequently upregulates its
target genes, including the G protein family, zinc finger proteins,
E-cadherin, and other growth factors such as BMPs, TGFβ, FGF,
and EGF to a level sufficient for an enhanced cardiogenic differen-
tiation efficiency of MSCs and myocardial regeneration [13,99].
Cardiac Repair by the Active Fraction Isolated
from Rosa laevigataMichx
!

The total flavonoids (TFs) and some other compounds isolated
from Rosa laevigataMichx fruit have been reported to have a po-
tent antioxidant activity in both in vitro and in vivo experiments
[106,107]. These studies showed that TFs not only exhibited a
high scavenging effect, but also significantly decreased the levels
of total blood cholesterol (45.02%), triglycerides (33.86%), and
low-density lipoprotein cholesterol (73.68%) in a hyperlipemia
mousemodel [107]. The authors therefore inferred that the prop-
erties of TFs in antioxidant and hypolipidemic activities might
render TFs a potential medicine for CVD.
A recent study from our laboratory has again demonstrated the
ability of an active fraction isolated from the Chinese herb
R. laevigataMichx (i.e., aFRLM) in promotingmyocardial regener-
ation in an acuteMI rat model. It was found that daily oral admin-
istration of aFRLM (300mg/kg body weight) to an acute MI ani-



Fig. 3 The possible cellular origin of the regener-
ating myocytes. Representative counter-staining
(DiI and MEF2) micrographs of the MI heart, which
was subject to BMTwith DiI-labeled MSCs 1 week
prior to LAD ligation. i One week post-cardiogenin
treatment. ii Two weeks post-treatment, signifi-
cantly more MEF2 positive cells colocalized with the
DiI labeling (green circles) were found. iii There
were less vessels (yellow circles) and DiI‑MEF2 colo-
calized cells (green circles) observed in the vehicle-
treated heart. iv Ki67 and MHC double immunos-
tained LV section of the cardiogenin-treated heart.
Blue arrows, newly formedmyocyte-like cells. Green
arrows, Ki67 positively stained vessel endothelial
cells. Red circles, the normal myocytes with MHC
positively, but Ki67 negatively stained. v Ki67 and
MHC double immunostained LV section of the ve-
hicle-treated control heart. Fibrous scar replace-
ment (Fib) ([99], with the permission of the au-
thors). (Color figure available online only.)

643Reviews

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.
mal for a month progressively improved the cardiac function of
the experimental animals. Morphological analysis of the thera-
peutic effect of aFRLM onMI demonstrated that the infarcted car-
diac tissues were replaced by many well-arranged, red-stained
myocyte-like cell clusters in the central infarct zone. By compari-
son, a large area of fibrous scar was found throughout the whole
infarct region in the vehicle-treated MI heart with few myocyte-
like cell clusters observed. The result of Massonʼs trichrome stain-
ing further demonstrated that although the infarcted cardiac tis-
sues were replaced by blue-stained fibrous scar tissues, many
red-stained myocyte-like cell clusters were found in the central
infarct region. By contrast, in the vehicle-treated MI heart, the
blue-stained fibrous scar replacement of the infarcted cardiac tis-
sues was found throughout the whole infarcted region with few
red-stainedmyocyte-like cells clusters observed. Some of themy-
ocyte-like cells were positively stained by both Ki-67 (brown nu-
clei) and MHC (yellow cytoplasm) specific antibodies in aFRLM-
treated MI hearts. Some of the regenerating myocytes joined to-
gether in tandem formingmyocardium-like tissue. By contrast, fi-
brous scar replacement was found throughout the infarct region
with few Ki-67 and MHC positively stained myocyte-like cells
found (l" Fig. 4) (authorʼs unpublished data). Although the cellu-
lar origin of the regenerating myocytes remains to be verified,
based on the ability of aFRLM (40 µg/ml culture medium) to in-
duce cardiogenic differentiation of MSCs (20–30%) in vitro, and
the one-third smaller sizes of the newly regenerated cardiac my-
ocytes in aFRLM-treated MI hearts, the regenerating myocytes
are likely derived from circulating MSCs or CSCs [108–110].
Occlusion of a major coronary artery would cause a significant
loss of functional cardiac myocytes in its distribution territory
through necrosis, intrinsic and extrinsic apoptosis pathways,
and autophagy. Repair of the dead cardiac tissues with newly re-
generated cardiac myocytes remains a mission impossible.
Therefore, this report may provide an alternative method for the
repair of infarct hearts through enhancing mechanisms of inher-
ited cardiac repair.
Conversion of Fibroblasts in Cardiac Scar into
Myocytes by Natural Plant Compounds
!

Although in fetal life the ability of regeneration of tissues to re-
pair wounds is retained with no scar tissue formed, in postnatal
life, wound healing occurs at the expense of function with a fi-
brous scar formed to repair the wound [111]. MI is naturally re-
paired by the formation of a fibrous scar that patches up the car-
diac wound, sustaining the integrity of the heart. However, the
scars are mainly composed of disordered fibrous tissues having
no resemblance to the original cardiac tissues being replaced.
Therefore, although the integrity and about 70% of the strength
of the affected myocardium is attained, the scar tissues are not
functional, which may eventually cause heart failure [112].
Therefore, conversion of the cardiac fibroblasts in the scar tissues
into myocytes may be an ideal alternative for the treatment of
chronic MI.
Although conversion of fibroblasts in heart scar tissues into myo-
cytes would be a very intriguing therapy for the disease, solid
supporting evidences are few. A recent study reported that the
introduction of a combination of Gata4, Mef2c, and Tbx5 genes
into cardiac resident fibroblasts (CRFs) could convert them into
cardiac myocyte-like cells both in vitro and in vivo [113,114]. A
subsequent study from another laboratory soon reported that
the conversion of CRFs by this combination of transcription fac-
tors was not only inefficient, but also resulted in decreased cell
survival in vivo [115]. Some other studies indicated that delivery
of TGFβ or MyoD into CRFs may convert them into myocyte phe-
notypes [116,117]. Compared with the method associated with
gene combination delivery, treatments with natural compounds,
such as a drug-like small molecule or compound combination,
that canmanipulate expressions of cardiac differentiation-associ-
ated genes or a gene combination, such as MEF2, GATA4, and
TBX5 in treated CRFs, would bemore convenient and practical al-
ternatives, so that when the drug-like molecule or compound
combination is administered, the drug-like molecule-mediated
actions may override the post-mitotic phenotype of the fibro-
blasts in the scar tissues and covert them into cardiac myocytes.
Zhou Z et al. Plants and Their… Planta Med 2015; 81: 637–647



Fig. 4 Morphological assessment of the therapeu-
tic effect of aFRLM on MI. Tr-1, representative mi-
crographs of the aFRLM-treated (4 weeks) MI heart
showing many red-stained myocyte-like cell clus-
ters (blue rectangular surrounded) formed in the
central area of the infarct. Ct-1, a fibrous scar was
found throughout the whole infarct region (Fib) in
the vehicle-treated MI heart. Tr-2, Massonʼs tri-
chrome staining demonstrated the formation of
many red-stained myocyte-like cell clusters in the
aFRLM-treated heart (yellow-circled). Ct-2, the
blue-stained fibrous scar was formed in the vehicle-
treated MI heart. Tr-3, some of the myocyte-like
cells (blue arrow heads) were positively stained by
both Ki-67 (brown nuclei) and MHC (yellow cyto-
plasm) specific antibodies in the aFRLM-treated MI
hearts. Ct-3, fibrous scar replacement was found
throughout the infarct region (Fib). (Color figure
available online only.)
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This assumption has been recently tested in our laboratory by
treating dermal fibroblasts or CRFs in vitro with a combination
of compounds. These treatments could transiently upregulate
the expressions of certain cell dedifferentiation-related genes,
such as Oct4, c-Myc, Sox2, or Klf4, as well as promote the expres-
sion of cardiogenic conversion-associated transcription factors,
such as MEF2, GATA4, and TBX5 genes, in treated dermal fibro-
blasts or CRFs with some beating myocytes of rat-tail-derived fi-
broblast origin observed [15]. More importantly and consistently,
when rats with chronic MI were treated with the combination of
compounds, myocardial conversion of the fibroblast in the scar
region was observed with the global cardiac function signifi-
cantly improved [15].
Taken together, we have provided examples of natural plant ex-
tracts or compounds, such as R. glutinosa (RGE), ginseng (e.g.,
Rg1 and Rb1), S. miltiorrhiza Bunge (e.g., tan IIA, salvianolic acid
A and salvianolic acid B), G. japonicum Thunb. vax. chinense F.
Bolle (e.g., EGJ, AFGJ, and cardiogenin), R. laevigata Michx fruit
(e.g., aFRLM), and compound combinations for conversion of
CRFs. These treatments can promote angiogenesis, prevent myo-
cyte apoptosis, enhance the proliferation, migration, cardiogenic
differentiation, and cardiogenic conversion of EPCs, MSCs, and
CRFs for the treatment of CVD. Many other natural products are
found to possess similar properties as well. For instance, Xiong-
shao Capsule, extracted from Rhizoma Ligusticum Wallichii and
Radix Paeonia Rubra, can promote angiogenesis via upregulating
VEGF and basic fibroblast growth factor (bFGF) expressions [118].
YiQiFuMai injection, a Chinese medicine with ginsenosides as its
Zhou Z et al. Plants and Their… Planta Med 2015; 81: 637–647
major constituents, was reported to exert cardioprotective effects
to treat chronic heart failure [119]. Shuanglong formula (SLF), a
Chinese medicine composed of P. ginseng and S. miltiorrhiza,
was reported to have a therapeutic effect on MI in clinical prac-
tice. SLF was further simplified through a bioactivity-guided
screening to finally attain a minimized composition (new formu-
la NSLF6) while maintaining its therapeutic effect for MI. It was
found that the administration of NSLF6 for the treatment of MI
resulted in synergistic therapeutic efficacies between total ginse-
nosides and total salvianolic acids, probably due to its actions in
promoting cardiac cell regeneration, therapeutic angiogenesis,
and antagonizing myocyte oxidative damage [120]. It should be
noted that a single compound that targets a single gene or gene
product may not be sufficient to elicit a curative treatment for
most CVDs since the pathology-modifying treatment of a disease,
MI for example, involves especially complicated multifactor coor-
dinated processes. However, a rational combination of com-
pounds with their respective activities may achieve a curative
treatment effect through a well-coordinated synergistic mecha-
nism.
Conclusions
!

1. Under physiological conditions of an adult human life, the re-
generation rate of myocytes through mechanisms of inherited
cardiac regeneration during cardiac homeostasis accounts for
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the loss of ~ 3 × 106 myocytes per day, which is, however, se-
verely limited in pathological cardiac repair [15].

2. Cardiovascular beneficial effects of the application of some nat-
ural plant compounds, such as R. glutinosa-derived RGE, gin-
seng-derived ginsenosides (Rg1, Rb1), S. miltiorrhiza Bunge-
derived tan IIA, salvianolic acid A and salvianolic acid B, G. ja-
ponicum Thunb. vax. chinense F. Bolle-derived EGJ, AFGJ, and
cardiogenin, R. laevigataMichx fruit-derived aFRLM, and active
compound combinations, to enhance mechanisms of inherited
cardiac regeneration include promoting angiogenesis, prevent-
ing myocyte apoptosis, enhancing the proliferation, migration,
and cardiogenic differentiation of the progenitor cells and car-
diogenic conversion of EPCs and CRFs.

3. Although previous studies have provided promising evidence
of natural plant compounds to enhance mechanisms of inher-
ited cardiac regeneration for the treatment of CVD, future
studies in this field should focus more efforts on the isolation
of the single compound possessing a particular activity con-
tained in the active fraction or extract of the plant and on the
elucidation of the underlying mechanism of a particular action
of such a compound, so that a single compound with a specific
activity or compound combinationwith desiredmultiple activ-
ities that are required for curative treatment of a particular dis-
ease can be developed.
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