
Abstract
!

Prostate cancer is one of the leading causes of
death worldwide for men. There is increasing evi-
dence that diet and lifestyle play a crucial role in
prostate cancer biology and tumorigenesis. Due
to the fact that conventional chemotherapy is not
adequately effective against prostate cancer and
has severe side effects, numerous in vitro studies
have been conducted in order to identify the po-
tent cytotoxic or chemopreventive activity of nat-

urally occurring compounds and their respective
molecular mechanisms of action. In this context,
many natural compounds isolated from plants
have been found to inhibit cancer growth and to
induce cell cycle arrest, suppress angiogenesis,
and promote apoptotic or autophagic cell death.
Therefore, in this article, the most promising bio-
active natural products and their respective
mechanisms of action for the prevention or/and
treatment of prostate cancer are presented.
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Introduction
!

Prostate cancer (PCa) is one of the most common
malignancies in men and a leading cause of death
worldwide for men. Taking into consideration
that chemotherapy has severe side effects and
usually a poor outcome, there is an intensive need
for the development of safer and more effective
agents. Since plants have been used by traditional
medicine for the treatment of various diseases, in
the last decades, many natural products have
been isolated from plants and tested for their tu-
mor selectivity and cytotoxic efficacy. Several of
these naturally occurring compounds have been
found to inhibit PCa growth and metastasis and
are thus a promising approach for the treatment
of this malignancy. Laboratory studies in different
in vitro and in vivo systems have shown that these
natural products modulate cellular processes, ex-
hibit chemopreventive and/or chemotherapeutic
effects, and induce apoptosis and autophagy. Ac-
cordingly, the antiproliferative and autophagic ef-
fects of nontoxic dietary agents could be of addi-
tional significance for the prevention, control, and
management of PCa, specifically for the advanced
and androgen-independent stage of the malig-
nancy [1–3]. As there is increasing data on how
natural compounds interfere with diverse molec-
ular pathways in cancer cells, this review dis-
Gioti K, Tenta R.
cusses the mechanism of action of bioactive natu-
ral products in the field of PCa and emphasizes
the implicated molecular pathways of apoptosis
and autophagy as important processes that con-
trol cellular homeostasis and that have been high-
lighted as promising targets for novel cancer
therapies.
Apigenin
!

Apigenin (4′,5,7-trihydroxyflavone) is a flavone
found in plants of the Asteraceae family, such as
Anthemis sp., and many fruits and vegetables [4].
Apigenin has been tested in various types of can-
cer cell lines (breast, colon, liver, lung) showing
promising results [5]. In prostate cancer in partic-
ular, apigenin administered in various concentra-
tions (1–20 μΜ) for 24, 48, and 72 h not only
causes G1 cell cycle arrest both in androgen-de-
pendent (LNCaP) and ‑independent (DU145 and
PC-3) PC cell lines through the decreased expres-
sion of cyclins D1, D2, and E, but also induces ap-
optosis through a shift in the Bax/Bcl-2 ratio [6,7].
Further studies in PC-3 cells have also demon-
strated that apigenin (5–40 μΜ), delivered for
24 h, suppresses cell proliferation and induces ap-
optosis by inhibiting IGF‑IGF‑IR signaling and in-
activating the PI3k/Akt pathway [8]. Apigenin
Bioactive Natural Products… Planta Med 2015; 81: 543–562
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treatment of PC-3M cells (25 μΜ for 16 h) also prevents cell mo-
tility and invasion through a disruption of the actin cytoskeleton
organization and inhibition of FAK/scr signaling [9]. Apigenin is
also a mediator of epigenetic events, when administered at simi-
lar concentrations (20–40 µM), as it inhibits class I HDACs both in
PC-3 and 22Rv1 cells [10]. In 22Rv1 cells, induction of apoptosis is
attributed to ROS generation, which subsequently triggers tran-
scriptional, p53-dependent and ‑independent, pathways [11].
The antiangiogenetic potential of apigenin is also demonstrated
in PC-3, LNCaP, and C4-2B cells and is attributed to a decreased
production of vascular endothelial growth factor (VEGF) leading
to the inhibition of cancer progression and metastasis [12]. Fi-
nally, in vivo studies have shown that apigenin causes growth in-
hibition of 22Rv1 and PC-3 tumor xenografts in athymic nude
mice [13], whereas in TRAMP mice, apigenin suppresses cancer
progression [14].
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Artemisinin and Derivatives
!

Artemisinin (3R,5aS,6R,8aS,9R,12S,12aR)-octahydro-3,6,9-tri-
methyl-3,12-epoxy-12Hpyrano[4,3-j]-1,2-benzodioxepin-10
(3H)-one is a sesquiterpene lactone and a naturally occurring
component of Artemisia annua (Asteraceae) [15]. It is a potent
antimalarial compound that was shown to have antiproliferative
effects on a number of human cancer cell lines. Artemisinin treat-
ment (300 μΜ for 48 h) triggers G1 cell cycle arrest of LNCaP hu-
man prostate cancer cells due to the transcriptional downregula-
tion of CDK4 expression caused by a disruption of Sp1 interac-
tions with the CDK4 promoter [16]. Furthermore, artesunate
(ART), a semisynthetic derivative of artemisinin, is found to cause
G2/M cell cycle arrest in PC-3 cancer cells [17]. Other studies
demonstrated that dihydroartemisinin (DHA), another derivative
of artemisinin, reduces cell viability in a time- (30 μΜ for 24, 48,
and 72 h) and dose-dependent (10–50 μΜ for 24 h) manner in
androgen-dependent (LNCaP) and ‑independent (DU145 and
PC-3) cells by the activation of caspases 8 and 9, suggesting that
DHA is involved both in the extrinsic and intrinsic pathways of
apoptosis. Finally, DHA and the artemisin dimers ON-2Py and
2Py cause a dose-dependent decrease in the proliferation of
LNCaP and PC-3 cells through growth arrest [18,19].
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Baicalin–Baicalein
!

7-D-glucuronic acid-5,6-dihydroxyflavone is a flavone isolated
from Scutellaria baicalensis (Lamiaceae) which is converted to
baicalein, in vivo [20]. Baicalin inhibits cell proliferation of vari-
ous cancer cell lines (bladder, bone, breast, colon, liver) and ex-
erts its cytotoxic/cytostatic effect through the induction of apo-
ptosis in DU145, PC-3, LNCaP, and CA‑HPV‑10 prostate cancer cell
lines when administered at concentrations of 150 µM or above
for 2–4 days [21]. A study in LNCaP cells revealed that baicalin in-
creases the expression of cyclin-dependent kinase inhibitor [p27
(kip1)] and causes G1 cell cycle arrest. Similar results are found
for baicalein [22]. Baicalin at doses of 50 µM and 125 μΜ also in-
duces G1 arrest and apoptosis in DU145 cells through the inhibi-
tion of bcl-2, loss of Bax, and upregulation of Fas [23]. In PC-3
cells, baicalein overcomes TRAIL resistance by upregulating DR5.
Finally, both baicalin and baicalein prevent angiogenesis and re-
duce tumor volume in xenograft models receiving different doses
of baicalein (10–40mg/kg per day) for 28 days.
Gioti K, Tenta R. Bioactive Natural Products… Planta Med 2015; 81: 543–562
Berberine
!

Berberine (5,6-dihydro-9,10-dimethoxybenzo[g]-1,3-benzo-
dioxolo[5,6-a]quinolizinium) is an isoquinoline alkaloid derived
from the plants of the genus Berberis (Berberidaceae) [24]. Treat-
ment of DU145, PC-3, and LNCaP cells with berberine leads to in-
hibition of cell proliferation combined with G1 cell cycle arrest in
a dose- (10–100 μΜ) and time-dependent (24–72 h) manner,
without affecting normal human prostate epithelial cells. The
suggested molecular mechanisms refer to the inhibition of the
expression of cyclins D1, D2, and E and cyclin-dependent kinase
(Cdk) 2, Cdk4, and Cdk6 proteins, the increased expression of the
Cdk inhibitory proteins (Cip1/p21 and Kip1/p27), and the en-
hanced binding of Cdk inhibitors to Cdks. Berberine induces cell
death of cancer cells via modulations of the Bax/Bcl-2 ratio, dis-
ruption of the mitochondrial membrane potential, and activation
of poly(ADP-ribose) polymerase and caspases [25]. Low concen-
trations of berberine (less than 50 μΜ) in RM-1 cells trigger G1
arrest associated with the activation of the p53-p21 cascade,
whereas higher concentrations (over 50 μΜ) of berberine cause
G2/M arrest. Studies in LNCaP xenografts in nude mice revealed
that berberine delivered at 5mg/kg/day inhibits tumor growth
due to a reduction in AR expression [26]. Finally, berberine (at
doses of 30 μΜ and 50 μΜ) enhances the radiosensitivity of hu-
man prostate cancer cells as it interferes with MAPK/caspase-3
and ROS pathways and inhibits the expression of HIF-1alpha and
VEGF [27].
Betulinic Acid
!

Betulinic acid [(3beta-hydroxy-20(29)-lupaene-28-oic acid] (BA)
is a pentacyclic triterpene derived from the bark of Betula papyri-
fera (Betulaceae) [28]. BA (1–5 µM) was firstly shown to trigger
apoptosis and antiangiogenic responses in LNCaP cells and then
in xenograft models when delivered at doses of 10 and 20mg/
kg/day every second day for 14 days by decreasing the expression
of the anti-apoptotic proteins, survivin and VEGF, caused by deg-
radation of the transcription factors specificity proteins Sp1, Sp3,
and Sp4 [29]. Treatment of PC-3 cells with BA (10 μΜ and 20 μΜ)
inhibits TNFα-induced activation of NF-κB, which shifts the Bax/
Bcl-2 ratio and leads to cleavage of poly(ADP)ribose polymerase
and thus induces apoptosis [30]. Recently, BAwas found to inhibit
multiple deubiquitinases (DUBs), which results in poly-ubiquiti-
nated protein accumulation, decreased levels of oncoproteins,
and increased apoptotic cell death in LNCaP, DU145, and PC-3
cells. BA treatment (10mg/kg for 15 days) of TRAMP mice results
in inhibition of proliferation, tumor growth, and angiogenesis,
and lowers the levels of the androgen receptor and cyclin D ex-
pression and the induction of apoptosis [31].
Capsaicin
!

Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is a vanilloid iso-
lated from the plants of the genus Capsicum (Solanaceae) [32].
Capsaicin inhibits the growth of PC-3 cells, both in vitro (IC50 of
20 μΜ) and in xenograft models (5mg/kg), and stimulates apo-
ptosis through reactive oxygen species generation, dissipation of
the mitochondrial inner transmembrane potential, and activa-
tion of caspase 3 [33]. Further studies in PC-3 cells reveal that ap-
optosis is also induced by ceramide accumulation and activation
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of JNK and ERK [34]. Likewise, capsaicin at varying concentra-
tions (100–500 μΜ) triggers apoptosis both in androgen-depen-
dent (LNCaP) and refractory (DU-145) prostate cancer cell lines
and is associated with an increase of p53, p21, and Bax, a down-
regulation of both the prostate-specific antigen (PSA) and AR, and
inhibition of proteasome activity [35].
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Curcumin
!

Curcumin (diferulolylmethane), a diphenylheptanoid isolated
from Curcuma longa (turmeric; Zingiberaceae) [36], was firstly
described to induce apoptosis at doses of 5–50 µM in both andro-
gen-dependent and refractory prostate cancers by interfering
with the EGF‑R signaling pathway [37]. Apoptosis is also
prompted by curcuminʼs interference with Bcl proteins, ROS gen-
eration, and the activation of mitochondrial related pathways. In
PC-3 cells, the induction of apoptosis is attributed to apoptosis-
inducing factor (AIF) and caspase-independent mechanisms
[38]. Further studies revealed that curcumin decreases the prolif-
eration of prostate cancer cells through the downregulation of
the androgen receptor, whereas the activation of caspase-depen-
dent apoptosis is a result of the downregulation of AP-1, NF-κB,
cAMP response element-binding protein (CREB), PSA, and cyclin
D [39]. In addition, prostate cancer cells are accumulated in the
G1 phase by the proteasome-mediated downregulation of cyclin
E and the upregulation of CDKs. In early-stage prostate cancer,
curcumin acts as a chemopreventive agent affecting Wnt/β-cate-
nin pathways, leading to autophagy [40]. Furthermore, curcumin
suppresses glyoxalases, and thus modulates metabolic cellular
pathways and acts as a histone acetyltransferase inhibitor [41].
Other studies have shown that curcumin prevents PC angiogene-
sis and metastasis by interfering with the cell cytoskeleton or-
ganization and the VEGF expression, respectively. Studies in
DU145 xenografts, when curcumin is administered at doses of
5mg/kg thrice aweek for four weeks, show that invasion andme-
tastasis suppression by curcumin can also be attributed to a re-
duction in metalloproteinases expressed by cancer cells [42].
Inhibition of PCa growth combined with a reduction in the me-
tastasis rate caused by curcuminwas also found in the first in vivo
model tested, LNCaP xenograft in nude mice [43]. Interestingly,
several studies have been conducted in order to enhance curcu-
min delivery to cancer cells through liposomal distribution, cur-
cumin-loaded nanospheres, cellulose nanoparticles, and co-
loaded lipid-based carriers with promising results [44].
T
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s

Daidzein
!

Daidzein (4′,7-dihydroxyisoflavone) is an isoflavone (steroid glu-
coside) isolated from soy beans (Glycine max) (Fabaceae) [45] and
was firstly found to inhibit LNCaP and PC-3 cell growth. Even
though daidzein does not influence the cell cycle of LNCaP and
PC-3 cells, it decreases the expression of VEGF and AR genes in
both cell lines and elevates the apoptosis percentage of LNCaP
cells via the Akt pathway. Daizein has also been found to cause
modulations of the cyclin-dependent kinase-related pathway
genes and a downregulation of EGF and IGF in LNCaP, PC-3, and
DU145 cells [46]. Recent studies show that daizein (110 µM for
48 h) can cause epigenetic modifications to DNA, such as the pro-
moter CpG island demethylation of tumor suppressor genes, thus
demonstrating a chemopreventive role [47].
Delphinidin
!

Delphinidin [2-(3,4,5-trihydroxyphenyl)chromenylium-3,5,7-
triol] is an anthocyanidin (coumaroyl glucoside) mostly isolated
from Viola sp. (Violaceae) and Delphinium sp. (Ranunculaceae)
and from many pigmented fruits and vegetables [48]. Delphini-
din has been shown to induce a dose-dependent (30–180 μΜ) in-
hibition of cell growth and apoptosis in LNCaP, C4-2, 22Rv1, and
PC-3 cells via the inhibition of NFκB signaling and the subsequent
activation of caspases. Other studies propose that delphinidin in-
duces cell growth inhibition and apoptosis of human PC-3 cells by
inhibition of Notch-1 and/or NF-κB/PI3K pathways and Wnt/β-
catenin signaling [49]. In PC-3 xenografts in athymic nude mice,
delphinidin administration (2mg/animal thrice a week) resulted
in a significant inhibition of tumor growth [50].
Ellagic Acid
!

Ellagic acid (2,3,7,8-tetrahydroxy-chromeno[5,4,3-cde]chro-
mene-5,10-dione) (EA) is a polyphenolic compound [51] found
in various fruits such as blackberries (Rubus sp., Rosaceae), cran-
berries (Vaccinium sp., Ericaceae), pecans, pomegranates, rasp-
berries and strawberries. Studies in LNCaP cells show that EA
can cause DNA damage while it downregulates antiapoptotic
proteins, such as silent information regulator 1 (SIRT1), upregu-
lates the tumor suppressor protein p21, and modulates the ex-
pression of AIF thus resulting in ROS-mediated and caspase-me-
diated apoptosis [52]. Recent studies in LNCaP cells also depict
the antiangiogenetic effects of EA (at concentrations of 25 and
50 µM) as it decreases the eicosanoid biosynthesis levels and sup-
presses the HO system. In androgen-independent PC cells, DU145
and PC-3, EA is found to induce cell cycle arrest in the S phase and
apoptosis in a dose- (15–60 µmol/L) and time-dependent (24–
120 h) manner, which is associated with a decrease in cyclin B1
and cyclin D1 levels and caspase-dependent pathways. Finally,
EA is shown to confine the invasive potential of PC-3 and rat PC
cell lines by interfering with protease activity and decreasing
the secretion of matrix metalloproteinase MMP-2 [53].
Epigallocatechin-3-Gallate
!

Epigallocatechin-3-gallate [(2R,3R)-5,7-dihydroxy-2-(3,4,5-tri-
hydroxyphenyl)chroman-3-yl)3,4,5-trihydroxybenzoate] (EGCG)
is a catechin derived mainly from tea (Camellia sinensis, Thea-
ceae) [54]. Studies in LNCaP and DU145 cells have shown that
EGCG causes G0/G1 cell cycle arrest and induces apoptosis in a
cell-type-specific manner, irrespective of the p53 status of the
cells [55]. EGCG treatment upregulates the expression of WAF1/
p21, KIP1/p27, INK4a/p16, and INK4c/p18 and down-modulates
the expression of cyclin D1, cyclin E, cdk2, cdk4, and cdk6 pro-
teins while it increases the binding of cyclin D1 toward WAF1/
p21 and KIP1/p27 and decreases the binding of cyclin E toward
cdk2 [56]. In particular, EGCG-induced apoptosis in LNCaP cells
is mediated through the modulation of p53 and NF-κB expres-
sion, subsequent change in the Bax/Bcl-2 ratio, and activation of
capsases 3, 8, and 9 followed by poly (ADP-ribose) polymerase
cleavage when administered in 20–80 µM for 24, 48, and 72 h
[57]. Other molecular mechanisms involved in the induction of
apoptosis refer to the inhibition of COX-2 without affecting COX-
1 expression, both in LNCaP and PC-3 cells, and ERK1/2 activation
Gioti K, Tenta R. Bioactive Natural Products… Planta Med 2015; 81: 543–562
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via an MEK-independent, PI3-K-dependent signaling pathway in
PC-3 cells [58,59]. In addition, EGCG (10–60 µM) antagonizes an-
drogen action at multiple levels, as it suppresses the activation of
the agonist-dependent androgen receptor through Sp1-protein
and AR-regulated gene transcription, thus resulting in the inhibi-
tion of PCa growth. Invasion and migration are also inhibited
after EGCG treatment via modulations in VEGF, uPA, angiopoietin
1 and 2, MMP-2, and MMP-9 [60].
Administration of 0.06% EGCG in TRAMPmice demonstrated that
EGCG leads to attenuation of AR and the IGF-1 expression and de-
creases theMAPK signaling, thus inducing apoptosis without tox-
icity. Combinational treatment with 1 µM EGCG and cisplatin (2.5
or 5 µM) promotes the expression of the proapoptotic splice iso-
form of caspase 9 in PC-3 cells. Furthermore, oral administration
of encapsulated EGCG reduces cell viability and induces apoptosis
of DU145 PC cells. Finally, chitosan nanoparticles encapsulating
epigallocatechin-3-gallate cause tumor growth inhibition and a
reduction of secreted PSA levels [61,62].
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Fisetin
!

Fisetin (3,3′,4′,7-tetrahydroxyflavone) is a flavonol derived from
many plants, such as Acacia greggii (Fabaceae) [63], which has
been shown to have cytotoxic and cytostatic effects in numerous
cancer cell lines (breast, blood, liver, lung, melanoma, ovary, pan-
creas) [5]. Studies in prostate LNCaP cells revealed that fisetin,
when administered at 10–60 µM for 24 and 48 h, causes G1 cycle
arrest by downregulating cyclins and cyclin-dependent kinases
and triggers both caspase-dependent and ‑independent apoptot-
ic pathways. Fisetin also decreases AR levels and competes with
the AR ligand [64]. In highly metastatic PC-3 cells, fisetin inhibits
adhesion, migration, and metastasis by interfering with the NF-
κB pathway and by downregulating MMP-2 and MMP-9 [65].
The downregulation of NF-κB is accompanied with an increased
TRAIL-induced apoptosis in LNCaP, DU145, and PC-3 cells [66]. It
is noteworthy that fisetin also induces autophagic cell death
through the inhibition of mTOR and PI3K/Akt signaling [67]. In a
CWR22Rupsilon1 human xenograft model, a fisetin injection
(1mg/animal) twiceweekly was found to suppress tumor growth
and reduce PSA levels [64].
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Formononetin
!

Formononetin (7-hydroxy-4′-methoxyisoflavone) (FN) is an O-
methylated isoflavone acting as a phytoestrogen, which is found
in red clover plants (Trifolium pretense, Fabaceae) [45]. FN has
been shown to provoke apoptosis in LNCaP and PC-3 cells
through the ERK1/2 MAPK‑Bax pathway [68]. Further studies in
PC-3 cells show that FN-induced apoptosis is associated with the
inhibition of the IGF-1/IGF-1R pathway, alterations in the Bax/
Bcl-2 ratio, and modulations of the p38/Akt pathway when deliv-
ered at 25, 50, and 100 µM for 48 h [69,70]. FN triggers apoptosis
in DU145 cells as well through the activation of the mitochondri-
al apoptotic pathway, which follows the upregulation of RASD1
[71].
Gioti K, Tenta R. Bioactive Natural Products… Planta Med 2015; 81: 543–562
Gallic Acid
!

Gallic acid (3,4,5-trihydroxybenzoic acid) (GA) is a polyphenolic
constituent of grape (Vitis vinifera, Vitaceae) seed extract [72].
GA prompts a dose- (10–50 µmol/L) and time-dependent (6–
24 h) growth inhibition and G2/M cell cycle arrest in DU145 cells
through DNA damage and an increase of cdc25A/C-cdc2 phos-
phorylation. GA also results in apoptotic death of PCa cells by
triggering the cleavage of caspase-9, caspase-3, and poly (ADP-ri-
bose) polymerase (PARP) as well as by inducing ROS and mito-
chondria-mediated mechanisms [73]. GA has been shown to
cause DNA damage and inhibit the invasion and migration of
PC-3 cells in a dose- (50–200 µM) and time-dependent (12–
48 h) manner by blocking the p38, JNK, PKC, and PI3K/AKTsignal-
ing pathways while it reduces the levels of the NF-κB protein, re-
sulting in the repression of MMP-2 and − 9 [74]. In addition, GA
exerts a synergistic effect with doxorubicin in suppressing the
growth of DU145 cells [73].
It is noteworthy that oral feeding with drinking water supple-
mented with 0.3% and 1% (w/v) GA until 24 weeks of age inhibits
PCa growth and progression to advanced-stage adenocarcinoma
inTRAMPmice by decreasing the expression levels of Cdk2, Cdk4,
Cdk6, cyclin B1, and E proteins [75]. In DU145 and 22Rv1 PC xen-
ografts in nude mice being fed water with 0.3%, 1% (w/v) of GA
for 5 days/week for six weeks, GA was shown to suppress tumor
cell proliferation, reduce the microvessel density of tumor xeno-
grafts, and induce apoptosis [76].
Gambogic Acid
!

Gambogic acid is a xanthone isolated from Carcinia hanburyi
(Clusiaceae) [77] that suppresses the viability of PC-3 cells at
doses of 1–5 µmol/L, and downregulates TNF-α-induced invasion
of PC-3 cells at doses of 0.125–0.5 µmol/L via inactivation of the
PI3K/Akt and NF-κB signaling pathways [78]. Gambogic acid,
when injected in a xenograft prostate tumor model at 3mg/kg,
was shown to suppress tumor growth and angiogenesis by inhib-
iting the activation of vascular endothelial growth factor receptor
2 (VEGF-2R) and its downstream protein kinases, such as c-Src
and AKT [79].
Genistein
!

Genistein (4′,5,7-trihydroxyisoflavone) is a flavanone isolated
from Glycine max (Fabaceae) [80]. Genistein acts as a tyrosine
protein kinase inhibitor, thus causing a dose-dependent growth
inhibition of DU145, PC-3, and LNCaP PCa cell lines via the sup-
pression of protein phosphorylation [81]. Another study con-
ducted in LNCaP and PC-3 cells concluded that genistein-mediat-
ed growth inhibition is caused by the downregulation of survivin,
DNA topoisomerase II, cell division cycle 6 (CDC6), and mitogen-
activated protein kinase 6, and the augmented regulation of glu-
tathione peroxidase. In PC-3 cells, suppression of cell growth is
also attributed to the downregulation of the IGF-1/IGF-1R signal-
ing pathway [82,83].
Recent studies have shown that genistein exerts its apoptotic and
antiproliferative effects by regulating microRNAs. Thus, genistein
is found to cause apoptosis through the downregulation of miR-
1260b and its target genes sRRP1 and Smad4 [84]. Furthermore,
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studies in PC-3 and DU145 cells show that genistein inhibits cell
growth by modulating miR-34a and HOTAIR expression [85].
Apoptosis is also attributed to various mechanisms such as inhi-
bition of proteasomal chymotrypsin-like activity, inactivation of
NF-κB, and inhibition of Akt [86]. Genistein in high doses has in-
hibitory effects due to modulating the expression of the AR func-
tion, but its growth inhibitory effect is independent of PSA ex-
pression [87]. However, genistein at physiological concentrations
(0.5–5 µM) activates mutant types of AR present in advanced PC
[88]. Moreover, numerous genes involved in cell adhesion and
migration (MMP-9, protease M, uPAR, VEGF) are downregulated
in PC-3 cells after genistein treatment [89]. A recent study
showed that genistein also targets cancer stem cells (CSC) and
can contribute to an anti-CSC effect, which is important for inhib-
iting PC relapse and metastasis [90]. Epigenetics effects of genis-
tein administrated at 40 µM are also found in DU-145 and PC-3
cells, as it reverses DNA hypermethylation of tumor suppression
genes leading to their activation and subsequent inhibition of
cancer progression [91].
In vivo studies reveal a chemopreventive activity of genistein. Lo-
bund-Wistar (L–W) rats that are susceptible to spontaneous and
induced metastasizing adenocarcinomas in the prostate-seminal
vesicle complex were found to exert a reduced incidence of in-
duced prostate-related cancer after genistein feeding [92].
TRAMP mice fed with a phytoestrogen-rich diet containing 100,
250, or 500mg of genistein per kg showed a low percentage of
PD (poorly differentiating) developed cancer [93].
Oral administration of genistein in PCa patients does not affect
PSA levels, yet a more recent study showed that 30mg of syn-
thetic genistein, given daily for three to six weeks, reduces serum
PSA levels [94]. In addition, combinational treatment of metastat-
ic-castration-resistant PCa with Cabazitaxel and genistein was
found to have an enhanced apoptotic effect [95]. Clinical use of
genistein against cancer is limited by its extremely low aqueous
solubility, poor bioavailability, and pharmacokinetics. Based on
structural analogy with steroidal compounds, liposomal vehicle
compositions are designed and optimized for maximum incorpo-
ration of genisteinʼs flavonoid structure. The pharmaceutical de-
sign of genistein-loaded liposomes seems to improve cellular de-
livery and specific proapoptotic effectiveness of the incorporated
drug against various cancers [96]. Finally, a meta-analysis of
studies that investigated soy food consumption and risk of PCa
was reported. The results of this meta-analysis suggested that
high consumption of non-fermented soy foods (e.g., tofu and soy-
bean milk) might significantly decrease the risk of PC [97].
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Ginsenosides
!

Ginsenosides are compounds isolated exclusively from the plants
of the genus Panax (Araliaceae). Ginsenoside Rg3 is one of the bi-
oactive components found in ginseng root extract [98]. Rg3 has
been found to arrest LNCaP cells at the G1 phase and subse-
quently induce a caspase3-mediated apoptosis mechanism by ac-
tivating the expression of cyclin-kinase inhibitors, p21 and p27.
Rg3 with an IC50 of 8.4 µM was also shown to modulate the ex-
pression of MAP kinases, inducing cell detachment of LNCaP and
PC-3 cells [99]. Further studies suggest that Rg3 interferes with
the p38 MAPK pathway, causing a downregulation of AQP1 ex-
pression (water channel protein, involved in cell migration),
which leads to the inhibition of cell migration and metastasis of
PC-3M cells [100]. Combinational treatment of Rg3 with various
chemotherapeutics (docetaxel, cisplatin, and doxorubicin) exhib-
its a more effective inhibition of PC cell growth in LNCaP, DU145,
and PC-3 cells through the suppressed activation of NF-κB [101].
Rh2 ginsenoside (β-D-glucopyranoside) is a glycoside isolated
from the root of Panax ginseng [102], which is also found to have
antiproliferative effects and cause cell detachment, with an IC50

of 5.5 µM in LNCaP and PC-3 cells, through modulations in MAP
kinase expression [99]. Rh2 (0.5–40 µM) and paclitaxel act syner-
gistically and cause a significant decrease of LNCaP cell prolifera-
tion and LNCaP tumor growth [103]. Oral administration of Rh2
at a dose of 120mg/kg in a PC-3 human xenograft model in nude
mice was found to decrease tumor cell proliferation, significantly
delay the tumor growth, and eventually increase the rate of apo-
ptosis [104].
Hydroxyprotopanaxadiol (25-OH‑PPD) and 20(S)-25-methoxyl-
dammarane-3β,12β,20-triol (25-OCH3-PPD) were isolated from
Panax ginseng as well [105]. Both were found to decrease the ex-
pression levels of proteins associated with cell proliferation
(MDM2, E2F1, cyclin D1, and Cdk 2 and Cdk 4), thus causing cell
cycle arrest in the G1 phase and in LNCaP and PC-3 cells. Further-
more, both compounds engender the apoptosis of LNCaP and PC-
3 cells through the activation of proapoptotic proteins (p21, p27,
Bax, cleaved PARP, cleaved caspases). Finally, 25-OH‑PPD inhibits
tumor growth in PC-3 xenograft tumors in a dose-dependent
manner, while 25-OCH3-PPD represses tumor growth in PC-3
and LNCaP xenograft tumors [106].
Glycyrrhiza Compounds
!

The hexane/ethanol extract of Glycyrrhiza uralensis (Fabaceae)
(HEGU), comprising the two active compounds isoangustone A
and licoricidin, has been shown to exert anticarcinogenic effects
[107].
HEGU and its active flavonoid compound isoangustone A
(5,7,3′,4′-tetrahydroxy-6,5′-diprenylisoflavone) were found to in-
duce apoptosis of androgen-insensitive DU145 cells by augment-
ing the levels of cleaved caspase-9, caspase-7, caspase-3, and poly
(ADP-ribose) polymerase (PARP) in combination with mitochon-
drial membrane depolarization and cytochrome C release to the
cytosol [107]. Additionally, HEGU and its active component, iso-
angustone A, diminish DNA synthesis in a dose-dependent man-
ner, reduce the levels of CDK2, CDK4, cyclin A, and cyclin D1 pro-
teins and decrease the CDK2 activity causing G1 phase arrest in
DU145 cells [108]. HEGU also contains licoricidin, which has been
shown to act as a potent antimetastatic agent. Licoricidin inhibits
the metastatic and invasive capacity of malignant PCa cells by
suppressing the expression of adhesionmolecules and restricting
the secretion and activation of the matrix metalloproteinases
(MMP-2, MMP-9), TIMP-1, urokinase-type plasminogen activa-
tor, and VEGF [109].
Licochalcone (LA) (3-dimethylallyl-4,4′-dihydroxy-6-methoxy-
chalcone) is an estrogenic flavonoid isolated from licorice root
(Glycyrrhiza glabra) [110]. LA is found to cause G2/M cell cycle ar-
rest of PC-3 prostate cells, accompanied with the suppression of
cyclin B1 and cdc2 [111]. LA can also induce caspase-dependent
and autophagy-related cell death in LNCaP cells [112].
Glycyrrhetinic acid (18β-glycyrrhetinic acid) is an active triterpe-
noid metabolite abundantly present in licorice roots, which in-
hibits proliferation and growth of DU-145 cells (10–500 µM) by
the induction of apoptosis. It also reduces HUVEC tube formation
and prevents the invasion of DU-145 PC cells on matrigel-coated
Gioti K, Tenta R. Bioactive Natural Products… Planta Med 2015; 81: 543–562
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wells via the downregulation of NF-κB (p65), VEGF, and MMP-9
expression [113]. In LNCaP androgen-dependent PC cells, glycyr-
rhetinic acidwas shown to reduce the proliferation rate as well as
the production of prostate-specific antigen [114].
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Gossypol
!

Gossypol [2,2-bis-(formyl-1,6,7-trihydroxy-5-isopropyl-3-meth-
ylnaphthalene] is a polyphenolic aldehyde present in cottonseed
(Gossypium hirsutum, Malvaceae) [115], which has been shown
to exert antiproliferative and cytotoxic effects in PC cell lines
and implanted MAT-LyLu cells in Copenhagen rats. In MAT-LyLu
cells, gossypol modulates TGFβ1 and Akt signaling, altering the
expression of regulatory proteins such as cyclin D1, Cdk4, and
phospho-Rb and finally causing G0/G1 cell cycle arrest when de-
livered at 0.5–4.0 µM for 24, 48, and 72 h [116]. Gossypol has also
been found to induce G0/G1 cell cycle arrest in PC-3 cells and
prostatic cells from human benign prostatic hyperplasia (BPH)
patients as it evokes alterations in TGF-beta 1 expression levels.
In addition, gossypol at doses of 5–20 µM downregulates Bcl-xL
resulting in the inhibition of the heterodimerization of Bcl-xL/
Bcl-2 with proapoptosis molecules, which is followed by cas-
pase-dependent and ‑independent apoptotic processes [117].
Recently, gossypol was shown to induce autophagy in androgen-
independent PCa cells that have high levels of Bcl-2 and are re-
sistant to apoptosis, both in vitro and in vivo (PC xenografts), by
interrupting the interactions between Beclin1 and Bcl-2/Bcl-xL at
the endoplasmic reticulum, thus releasing the BH3-only pro-au-
tophagic protein Beclin1, which in turn triggers the autophagic
cascade [118].
Gossypol also inhibits metastatic behaviors (adhesion, migration,
and invasion) and angiogenesis. In PC-3 cells, GP suppresses AP-1
and NF-κB activity, resulting in the inhibited secretion of the ur-
okinase plasminogen activator and VEGF in combinationwith the
downregulation of chemokine receptor 4 [119]. In human pros-
tate tumor PC-3 xenografts in mice, gossypol at a dosage of
15mg/kg/day prompts the suppression of angiogenesis in the
solid tumors as it blocks the activation of VEGF receptor 2 kinase
causing the subsequent suppression of phosphorylation of focal
adhesion kinase, extracellular signal-related kinase, AKT kinase,
and key intracellular proangiogenic kinases such as Src family ki-
nase [120].
Combinational treatment of docetaxel and gossypol was found to
be cytotoxic and apoptotic in PC-3 cells in a dose- and time-de-
pendent manner [121]. Gossypol (0.5–10 μΜ) and sorafenib (2–
20 μΜ) were found to induce cell death via apoptotic pathways
in DU-145 cells and via autophagic pathways in PC-3 cells, re-
spectively [122]. Finally, administration of AT-101 (gossypol), at
20mg/day for 21 days, was found to decline PSA levels in some
men with chemotherapy-naïve, castrate-resistant PCa [123].
Luteolin
!

Luteolin (3′,4′,5,7-tetrahydroxyflavone) is a flavone isolated from
Terminalia chebula (Combretaceae) [124]. Luteolin induces apo-
ptosis in various cancer cell lines (bladder, blood, bone, breast,
colon, liver, lung) [5]. Induction of apoptosis in prostate DU145
cells is attributed to the up-regulation of death receptor 5 when
administered at concentrations of 5–40 μΜ for 24 h [125]. It also
suppresses cell growth and proliferation of DU145, PC-3 cells, and
Gioti K, Tenta R. Bioactive Natural Products… Planta Med 2015; 81: 543–562
PC-3 in vivo models by inhibiting insulin like growth factor 1
(IGF-1) and the subsequent activation of IGF-1R, AKT, EGFR, and
MAPK/ERK signaling [126]. In PC-3 cells, luteolin at doses of 1–
100 µM acts as a ligand for the nuclear type II [(3)H] estradiol
binding site resulting in epigenetic changes in various genes
(CCNA2 CCNE2, CDC25A, etc.) involved in the cell cycle [127]. Lu-
teolin (10–40 µM) also suppresses angiogenesis and invasion
through the downregulation of VEGF-2R in PC-3 cells in vitro
and in vivo and through the downregulation of AR and PSA ex-
pression in LNCaP cells, respectively [128].
Lycopene
!

Lycopene (ψ,ψ-carotene) is a carotenoid mostly isolated from Sol-
anum lycopersicum (tomato; Solanaceae) [129]. Extensive re-
search has been conducted both in vitro and in clinical trials in
order to identify the mechanisms of lycopeneʼs cytotoxic and
chemopreventive effects against PCa. More specifically, lycopene
is found to induce cell cycle arrest and apoptosis in PC-3, LNCaP,
DU145 cells, and DU145 xenografts. In LNCaP cells, lycopene in-
ducesmitochondrial-related apoptosis when delivered in physio-
logic concentrations (0.3–3.0 µM), whereas in high concentra-
tions (> 5 µM), it leads to DNA damage [130]. A lycopene-mediat-
ed reduction in cholesterol synthesis was also shown through the
activation of the PPARγ‑LXRα-ABCA1 pathway both in LNCaP and
DU145 cells [131]. In PC-3 cells and xenograft models, high con-
centrations of lycopene (16mg/kg twice a week for seven weeks)
induced apoptosis through alterations in IGF‑I, IGF‑IR, and IGFBP-
3 expression levels [132]. Both in LNCaP and PC-3 cells, G0/G1 cell
cycle arrest is caused by lycopene via its interference with phos-
phatidylinositol 3-kinase signaling, which leads to a decrease in
Cdk4, cyclins D1 and E, and Rb phosphorylation. Cell cycle arrest
and apoptosis are also attributed to a reduced activation of NF-κB
in combination with an increased expression of p21, p27, and
p53, shifting the Bax:Bcl-2 ratio. Migration and invasion of
LNCaP and PC-3 cells are also suppressed by lycopene via a reduc-
tion in the expression levels of integrins [133,134].
Moroever, lycopene acts also as a chemopreventive agent, delay-
ing or preventing the establishment of PCa. In LNCaP cells, lyco-
pene exerts its chemopreventive effect through an increase in de-
toxification proteins and subsequent prevention of DNA damage,
and suppresses ROS generation and oxidative stress as well [135].
Chemopreventive activity of lycopene was also found in TRAMP
mice fed 28mg lycopene per kg for 20 weeks [136].
In clinical trials, lycopene was found to be more of a chemopre-
ventive agent than a cytostatic agent of established tumors. Lyco-
pene given to patients at a dose of 4mg twice a day for one year
was shown to delay or prevent high-grade prostate intraepithe-
lial neoplasia from developing into PC [137], whereas whole to-
mato lycopene administration in men with established PCa at a
dose of 10mg per day for one year resulted in a reduced PSA ve-
locity [138]. Finally, recent epidemiologic studies have suggested
a potential benefit of lycopene against the risk of PCa. Five studies
support a 30 to 40% reduction in risk associatedwith high tomato
or lycopene consumption, three are consistent with a 30% reduc-
tion in risk, but the results were not statistically significant, and
seven were not supportive of an association [139].
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Compounds Derived from Magnolia sp.
!

Honokiol (2-(4-hydroxy-3-prop-2-enyl-phenyl)-4-prop-2-enyl-
phenol), a lignan isolated from Magnolia officinalis (Magnolia-
ceae) [140], has been found to decrease the viability of PC-3 and
LNCaP human PCa cells in a dose- and time-dependent manner
through G0–G1 phase cell cycle arrest. Honokiol also triggers ap-
optotic DNA fragmentation in a dose- (20–60 µM) and time-de-
pendent (24–72 h) manner both in androgen-dependent and ‑in-
dependent prostate cell lines (PC-3, LNCaP, and C4-2), which is
correlated with the induction of Bax, Bak, and Bad in addition to
a decrease in Bcl-xL and Mcl-1 protein levels [141,142]. Likewise,
honokiol treatment exhibits growth inhibitory, apoptotic, and
antiangiogenic effects on PC xenografts fedwith 1–3mg honokiol
thrice a week [141].
Magnolol (4-allyl-2-(5-allyl-2-hydroxy-phenyl)phenol) is a hy-
droxylated biphenyl (lignan) isolated from the root and stem
bark ofMagnolia officinalis [140]. Magnolol was shown to induce
apoptotic cell death in a dose-dependent (10–60 µM) manner in
PC-3 cancer cells through epidermal growth factor receptor
(EGFR)-mediated signaling transduction pathways and also in-
hibits the adhesion, invasion, and migration of PC-3 human pros-
tate [143].
Obovatol (5-prop-2-enyl-3-(4-prop-2-enylphenoxy)benzene-
1,2-diol), a biphenyl ether lignan isolated fromMagnolia obovata
[144], engages LNCaP and PC-3 cells to apoptotic cell death
through the inhibition of NF-κ B activity and also enhances the
cell growth inhibition of chemotherapeutics (docetaxel, paclitax-
el, cisplatin, and doxorubicin) [145].
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Oridonin
!

Oridonin (7a,20-epoxy-1a,6b,7,14-tetrahydroxy-Kaur-16-en-15-
one) is an isoprenoid (kaur-type diterpenoid) isolated from Rab-
dosia rubescens (Labiatae) [146]. Oridonin has been found to elic-
it G0/G1 cell cycle arrest and apoptosis of LNCaP cells through the
upregulation of p53 and Bax and the downregulation of Bcl-2 ex-
pression in a dose-dependent manner [147]. Oridonin has also
been shown to trigger G2/M cell cycle arrest, autophagy, and ap-
optosis in LNCaP and PC-3 cells by upregulating the expression of
p21 in a time- (12–72 h) and dose-dependent (10, 25–100 µM)
manner [148].
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Phenethyl-Isothiocyanat
!

Phenethyl-isothiocyanat [(2-isothiocyanato-ethyl)benzene]
(PEITC) is one of the most extensively studied isothiocyanates
(ITCs) that is found in cruciferous vegetables such as broccoli
(Brassica oleracea) and watercress (Nasturtium officinale) of the
Brassicaceae family, brussels sprouts, cabbage, Japanese radish,
and cauliflower [149].
In DU145 cells, PEITC (1–20 µM) suppresses cell proliferation and
causes cell cycle arrest in the G2/M phase and apoptosis in a
dose-dependent manner. The mechanism of PEITC action sug-
gests that it increases p53 expression while it reduces CDC25C,
inhibits the JAK-STAT3 signal cascade, and modulates the activa-
tion of the caspases pathway [150].
PEITC (5–20 µM) has also been described to induce G2-M cell
phase arrest and inhibit the expression of α- and β-tubulin pro-
teins in LNCaP, DU145, PC-3, and C4-2B cells through reactive
oxygen species generation and protein degradation [151]. Other
studies show that PEITC represses the androgen receptorʼs ex-
pression through the inhibition of Sp1 transcription, thus medi-
ating growth arrest both in androgen-dependent and ‑indepen-
dent PC cells [152].
In LNCaP and PC-3 cells, PEITC (2.5 and 5 μΜ) triggers apoptotic
mechanisms via the activation of Bax and ROS production,
whereas it downregulates survivin and X-linked inhibitors of ap-
optosis [153]. It is noteworthy that PEITC induces both apoptotic
and autophagic cell death in PC-3 and LNCaP cells regulated by
Atg5 protein [154].
Furthermore, PEITC (2.5 and 5 µM) was shown to restrain migra-
tion of PC-3 and LNCaP cells. The suggested mechanisms propose
that PEITC treatment leads to inactivation of Akt with a subse-
quent suppression of VEGF and interferencewith the Notch path-
way [155].
PEITC was found to cease angiogenesis both in human umbilical
vein endothelial cells (HUVEC) and in ex vivo experiments (chick-
en egg chorioallantoic membrane assay) [156]. In xenograft mod-
els, similar results were observed. When administered orally at a
dose of 12 µM/day for five days per week, PEITC delays growth of
PC-3 xenografts in athymic mice [157]. In an LNCaP xenograft
model, PEITC regulates tumor growth by suspending the expres-
sion of the platelet/endothelial cell adhesion molecule (PECAM1-
CD31) and by the suppression of angiogenesis [158]. Studies in
transgenic adenocarcinoma of the mouse prostate, in mice fed
with 3 µmol PEITC/g for 19 weeks, also revealed inhibition of
prostate carcinogenesis induced by the overexpression of E-cad-
herin and autophagy-regulated pathways [159].
Finally, the combination treatment of PEITC (2 μΜ) with docetax-
el (1 nM) increased the rate of apoptosis in PC-3 and DU145 cells
by the suppression of Bcl2 and the induction of Bax and Bak pro-
teins, while combinational treatment of PEITC with adriamycin
and etoposide led to PC-3 cell death through the downregulation
of protein kinase C and inhibition of telomerase [160].
Quercetin
!

Quercetin (2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chro-
men-4-one) is a polyphenol (flavonol) isolated from grapes
(V. vinifera, Vitaceae) [63]. Quercetin was found to reduce cell
growth and cause apoptosis in various cell lines (bladder, blood,
bone, breast, colon, liver, lung, mouth, esophagus) [5]. Quercetin
reduces cell growth of PC-3, LNCaP, and DU145 PC cells in a dose-
dependent manner by interfering with the expression levels of
numerous oncogenes and tumor suppressor genes. In LNCaP,
quercetin causes G2/M cycle arrest due to p21 upregulation and
cyclin B suppression [161]. Studies in PC-3 cells suggest that
growth inhibition is caused by a decreased phosphorylation of
ErbB-2, ErbB-3, c-Raf, MAPK kinase 1/2 (MEK1/2), and MAPK,
Akt-1 and is combined with a reduced metastatic rate and drug
resistance. In addition, quercetin has been described as interfer-
ing with c-Jun and SP1, causing AR reduction [162].
Quercetin at doses of 5–100 μΜ was also shown to provoke apo-
ptosis in PCa cell lines through inhibition of fatty acid synthase
and downregulation of heat shock protein 90 [163]. More studies
showed that quercetin induces G2/M cycle arrest and apoptosis
of PC-3 cells via a decrease in Cdc2/Cdk-1, cyclin B1, phosphoryl-
ated pRb, IGF‑I, and IGF‑II and an increase in p21, Bax, and cas-
pase-3, and modulations of the Bcl-2/Bax ratio [164]. In addition,
quercetin augments TRAIL-induced cytotoxicity through caspase
Gioti K, Tenta R. Bioactive Natural Products… Planta Med 2015; 81: 543–562
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activation, inhibition of surviving, and Akt phosphorylation
[165]. Moreover, in vitro and in vivo studies in prostate xenograft
mouse models depict quercetinʼs antiangiogenetic effects as it in-
teracts with the VEGF‑R2-regulated autophagic (AKT/mTOR/
P70S6K) pathway when administered at a dose of 20mg/kg/day
[166].
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Sanguinarine
!

Sanguinarine (13-methyl-[1,3]benzodioxolo[5,6-c]-1,3-dioxolo
[4,5-i]phenanthridinium) is a benzophenanthridine alkaloid de-
rived from Sanguinaria canadensis (Papaveraceae) (the bloodroot
plant) [167]. In LNCaP and DU145, sanguinarine causes G0/G1
cell cycle arrest in a dose-dependent manner (0.1–2 µM) by inter-
fering with the expression of cyclin kinase inhibitors p21/WAF1
and p27/KIP1, cyclin E, D1, and D2 and cyclin-dependent kinases
2, 4, and 6 [168].
Sanguinarine has also been shown to confine PCa cells growth
and induce apoptosis at concentrations of 0.1–8 μΜ. This has
been attributed to the suppressed expression of survivin and
protein degradation via the ubiquitin-proteasome system [169].
Treatment of DU145, C4-2B, and LNCaP cells with sanguinarine
(2 μΜ and 4 μΜ, for 1–12 h) revealed that it restricts PCa growth,
migration, and invasion through Stat3 inactivation [170]. In
DU145 cell xenografts, the administration of sanguinarine
(0.25mg/kg and 0.5mg/kg) reduced tumor weight and volume
after 31 days [169].
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!

Silibinin or silybin (3,5,7-trihydroxy-2-(3-(4-hydroxy-3-meth-
oxyphenyl)-2-(hydroxymethyl)-1,4-benzodioxan-6-yl)-4-chro-
manone) is a flavolignan isolated from the fruits of Silybum ma-
rianum (Asteraceae) [171]. Silibinin has been described as caus-
ing G1 cell cycle arrest and decreasing both intracellular and se-
creted forms of PSA in LNCaP cells in a dose- (50–200 µM) and
time-dependent (12–48 h) manner, which has been attributed
to modulations of retinoblastoma (Rb) levels and its phosphoryl-
ation status combined with a decreased activity of cyclin-depen-
dent kinases (CDKs) [172]. Further studies in LNCaP cells revealed
that the decrease of PSAwas caused by the downregulation of the
androgen receptorʼs coactivator and the epithelium-derived Ets
transcription factor (PDEF) [173]. Silibinin was not only shown
to suppress global protein translation, thus inhibiting HIF-1 alpha
expression and telomerase activity [174], but also, as a lipophilic
compound, was found to compete in the EGF-erbB1 interaction
and to interfere with the mitogenic signaling and DNA synthesis
in LNCaP and DU145 cells [175].
In DU145 cells, silibinin treatment (50–200 µM, for 24 and 48 h)
caused G1 cell cycle arrest mediated by a decrease in p21 and p27
expression [176]. Silibinin also restrains Wnt/LRp6 signaling and
induces apoptosis through the inhibition of active Stat3 while it
sensitizes cells to TNFα-induced apoptosis through constitutive
NF-κB inactivation [177].
Silibinin at pharmacologically achievable concentrations (0.02–
20 µM) causes G1 and G2/M cycle arrest in PC-3 cells by interfer-
ing with the expression levels of cyclins and CDKs [178] and the
insulin-like growth factor I receptor-mediated signaling pathway
[179].
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Silibinin has also been found to prevent migratory and invasive
potential of PC-3, PC-3MM2, C4-2B LNCaP, and DU145 cells
[180]. In general, silibinin inhibits the epithelial to mesenchymal
transition of PC cells through interference with the NF-κ B path-
way and subsequent downregulation of ZEB1 and SLUG tran-
scription factors and by downregulating vimentin and MMP2
[181]. Silibinin also exerts inhibitory effects in high bone meta-
static prostate models and prevents PC cells-induced osteoclasto-
genesis [182].
In xenograft models, silibinin is described as having antiprolifer-
ative, proapoptotic, and antiangiogenic effects. Studies in PC-3
tumor xenografts in athymic mice revealed that silibinin effects
are attributed to an increase in IGFBP-3, Cip1/p21, and Kip1/p27
levels, activation of ERK1/2, and a decrease in Bcl-2 and VEGF lev-
els. In TRAMPmice fed 0.5% and 1% w/w silybin-phytosome diets
for 11 weeks, silibinin blocked PCa growth and progression
through IGF‑IGFBP-3 axis modulation, whereas it suppressed tu-
mor microvessel density via a decrease in VEGF, VEGFR-2, MMPs,
and vimentin [183]. Finally, in patients receiving a silybin-phyto-
some (13 g/day) for 14–31 days, high blood concentrations were
found transiently, but low levels of silibinin were detected in
prostate tissue. Silibininʼs lack of tissue penetration may be ex-
plained by its short half-life, the brief duration of therapy in this
study, or an active process of removing silibinin from the prostate
[184].
Sulforaphane
!

Sulforaphane (1-isothiocyanato-4-methylsulfinylbutane) (SFN)
is a natural isothiocyanate found in many cruciferous vegetables,
firstly isolated from Brassica oleracea (broccoli; Brassicaceae)
[185]. Many studies have shown that SFN can provoke cell cycle
arrest and apoptosis in androgen-dependent and androgen-re-
fractory PC cell lines. SFN (IC50 of 10 µM) causes G2/M phase ar-
rest in DU145 cells [186] and G1 cell cycle arrest in LNCaP and PC-
3 cells. The antiproliferative effects of SFN at doses of 10–40 µM
involve mechanisms such as the modulation of methyltransfer-
ases expression, which leads to an increase in cyclin D2 in LNCaP
cells, and protein synthesis inhibition through decreased phos-
phorylation of mTOR substrates in PC-3 cells [187]. Apoptosis is
induced through caspase activation in LNCaP cells, ROS genera-
tion that triggers intrinsic and extrinsic caspase cascades in PC-3
and DU145 cells [186], and inhibition of histone deacetylase 6 in
BPH-1, LNCaP, and PC-3 cells [188,189]. SFN has also been re-
ported to inhibit HIF-1α with a subsequent decrease in VEGF ex-
pression, thus preventing prostate cell angiogenesis [190]. Cell
migration of PC-3 and LNCaP cells is also restricted by SFN when
delivered at 20 μΜ for 8 and/or 24 h due to modulations of the
Notch pathway [191].
In vivo studies have deduced that oral administration of a daily
dose of 7.5mmol per animal for 21 days in PC-3 xenografts in
nudemice causes a > 50% reduction in tumor volume due to a de-
crease in HDAC activity. Finally, TRAMP mice that were fed broc-
coli sprouts exhibited a decrease in prostate tumor growth [192].
Thymoquinone
!

Thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone) (TQ)
is a phytochemical isolated from the plant Nigella sativa (Ranun-
culaceae) [193]. TQ (40–100 µM) has been found to reduce cell



Fig. 1 Mechanism of action of bioactive natural products in prostate cancer
cells. Natural compounds provoke apoptosis of PCa cells by triggering cas-
pases (berberine, gallic acid) and mitochondrial-dependent cascades (hono-
kiol) or by inhibiting oncogenes (baicalein), and by suppressing the NFκB

signaling pathway (curcumin). Other compounds trigger autophagy via inhi-
bition of the PI3K signaling pathway (apigenin), suppression of the mTOR
complex (fisetin), or activation of the phagophore formation-related proteins
(PEITC, gossypol).
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growth both in androgen-dependent (LNCaP, C4-B) and andro-
gen-refractory (DU145, PC-3) PC cell lines. Cell growth reduction
is attributed to a decrease in AR and E2F-1 as well as the E2F-1
regulated proteins [194]. In PC-3 and C4-B cells, TQ (IC50 values
of approximately 50 and 80mM) was shown to induce apoptosis
through increased ROS generation and decreased GSH levels
[195]. Other studies in PC-3 cells also demonstrated that TQ in-
hibits cell proliferation through suppression of AKT and prevents
tumor angiogenesis via the repressed activation of induced ex-
tracellular signal-regulated kinase by VEGF [196].
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Ursolic Acid
!

Ursolic acid ((3β)-3-hydroxyurs-12-en-28-oic acid) (UA) is a pen-
tacyclic triterpenoid compound derived from Cornus officinalis
(Cornaceae) [197].
In PC-3 cells, UA evokes apoptosis via extrinsic and intrinsic apo-
ptotic pathways while it confines cell invasion by inhibiting Akt
and downregulating matrix metalloproteinase-9 [198]. UA was
also shown to induce apoptosis through JNK activation, which re-
sults in Bcl-2 phosphorylation and degradation causing the acti-
vation of caspase 9, both in androgen-dependent (LNCaP) and an-
drogen-independent PCa cell lines (LNCaP‑AI and DU145 cells)
[199]. In addition, UA displays a role in the suppressed activation
of NF-κ B and STAT3 by downregulating the expression of various
NF-κB and STAT3 gene products involved in proliferation, surviv-
al, and angiogenesis, and thus induces apoptosis in PCa cell lines
(LNCaP, DU145) and TRAMP mice [200]. UAwas also found to re-
strict metastasis through the suppression of CXCR4 expression in
PC both in vitro (PC-3, LNCaP, DU145 cells) and in vivo (TRAMP
mice fed 1% w/w UA for 6 to 8 weeks) [201]. Finally, in DU145
cells, UA and its cis- and trans-3-O‑p-hydroxycinnamoyl esters
derived from American cranberries, such as Vaccinium macrocar-
pon, were shown to limit tumor cell growth at micromolar con-
centrations through matrix metalloproteinase (MMP-2 and
MMP-9) inhibition [202].
Conclusion
!

In this review article, the most promising bioactive natural prod-
ucts and their respective mechanisms of action for the treatment
of PCa are presented, as they affect the processes of cell prolifer-
ation, cell cycle control, apoptosis, autophagy, tumor angiogene-
sis, invasion, and metastasis (l" Fig. 1, Table 1). Indeed, a variety
of natural products have gained widespread use in the clinical
treatment of a number of malignancies, such as carcinomas of
the colon, breast, ovary, lung, and prostate. Unlike conventional
chemotherapy, targeted agents have a relativelywide therapeutic
window and have nonoverlapping toxicity profiles. Natural com-
pounds that interfere with essential carcinogenic pathways,
without demonstrating severe side effects, could exert a signifi-
cant role as chemotherapeutic or chemopreventive agents, thus
offering an alternative or complementary approach to the treat-
ment of cancer. However, further in vivo studies should be con-
Gioti K, Tenta R. Bioactive Natural Products… Planta Med 2015; 81: 543–562
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ducted in order to clarify whether these compounds can exert
their effects in physiologic concentrations or have a combination-
al effect when administered with the traditional chemothera-
peutic agents in order to determine if they are possible candi-
dates for clinical trials.
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