Bioactive Natural Products against Prostate Cancer: Mechanism of Action and Autophagic/Apoptotic Molecular Pathways

Katerina Gioti, Roxane Tenta

Department of Nutrition and Dietetics, Harokopio University, Athens, Greece

Abstract

Prostate cancer is one of the leading causes of death worldwide for men. There is increasing evidence that diet and lifestyle play a crucial role in prostate cancer biology and tumorigenesis. Due to the fact that conventional chemotherapy is not adequately effective against prostate cancer and has severe side effects, numerous in vitro studies have been conducted in order to identify the potent cytotoxic or chemopreventive activity of naturally occurring compounds and their respective mechanisms of action. In this context, many natural compounds isolated from plants have been found to inhibit cancer growth and to induce cell cycle arrest, suppress angiogenesis, and promote apoptotic or autophagic cell death. Therefore, in this article, the most promising bioactive natural products and their respective mechanisms of action for the prevention or treatment of prostate cancer are presented.

Introduction

Prostate cancer (PCa) is one of the most common malignancies in men and a leading cause of death worldwide for men. Taking into consideration that chemotherapy has severe side effects and usually a poor outcome, there is an intensive need for the development of safer and more effective agents. Since plants have been used by traditional medicine for the treatment of various diseases, in the last decades, many natural products have been isolated from plants and tested for their tumor selectivity and cytotoxic efficacy. Several of these naturally occurring compounds have been found to inhibit PCa growth and metastasis and are thus a promising approach for the treatment of this malignancy. Laboratory studies in different in vitro and in vivo systems have shown that these natural products modulate cellular processes, exhibit chemopreventive and/or chemotherapeutic effects, and induce apoptosis and autophagy. Accordingly, the antiproliferative and autophagic effects of nontoxic dietary agents could be of additional significance for the prevention, control, and management of PCa, specifically for the advanced and androgen-independent stage of the malignancy [1–3]. As there is increasing data on how natural compounds interfere with diverse molecular pathways in cancer cells, this review discusses the mechanism of action of bioactive natural products in the field of PCa and emphasizes the implicated molecular pathways of apoptosis and autophagy as important processes that control cellular homeostasis and that have been highlighted as promising targets for novel cancer therapies.

Apigenin

Apigenin (4′,5,7-trihydroxyflavone) is a flavone found in plants of the Asteraceae family, such as Anthemis sp., and many fruits and vegetables [4]. Apigenin has been tested in various types of cancer cell lines (breast, colon, liver, lung) showing promising results [5]. In prostate cancer in particular, apigenin administered in various concentrations (1–20 μM) for 24, 48, and 72 h not only causes G1 cell cycle arrest both in androgen-dependent (LNCaP) and -independent (DU145 and PC-3) PC cell lines through the decreased expression of cyclins D1, D2, and E, but also induces apoptosis through a shift in the Bax/Bcl-2 ratio [6,7]. Further studies in PC-3 cells have also demonstrated that apigenin (5–40 μM), delivered for 24 h, suppresses cell proliferation and induces apoptosis by inhibiting IGF-IGF-IR signaling and inactivating the PI3k/Akt pathway [8]. Apigenin

Reviews 543
treatment of PC-3M cells (25 µM for 16 h) also prevents cell motility and invasion through a disruption of the actin cytoskeleton organization and inhibition of FAK/scr signaling [9]. Apigenin is also a mediator of epigenetic events, when administered at similar concentrations (20–40 µM), as it inhibits class 1 HDACs both in PC-3 and 22Rv1 cells [10]. In 22Rv1 cells, induction of apoptosis is attributed to ROS generation, which subsequently triggers transcriptional, p53-dependent and -independent, pathways [11]. The antiangiogenic potential of apigenin is also demonstrated in PC-3, LNCaP, and C4-2B cells and is attributed to a decreased production of vascular endothelial growth factor (VEGF) leading to the inhibition of cancer progression and metastasis [12]. Finally, in vivo studies have shown that apigenin causes growth inhibition of 22Rv1 and PC-3 tumor xenografts in athymic nude mice [13], whereas in TRAMP mice, apigenin suppresses cancer progression [14].

**Artemisinin and Derivatives**

Artemisinin (3R,5αS,6R,8aS,9R,12S,12aR)-octahydro-3,6,9-trimethyl-3,12-epoxy-12Hpyran-4(3-j)-1,2-benzodioxepin-10 (3H)-one is a sesquiterpene lactone and a naturally occurring component of *Artemisia annua* (*Asteraceae*) [15]. It is a potent antimalarial compound that was shown to have antiproliferative effects on a number of human cancer cell lines. Artemisinin treatment (300 µM for 48 h) triggers G1 cell cycle arrest of LNCaP human prostate cancer cells due to the transcriptional downregulation of CDK4 expression caused by a disruption of Sp1 interactions with the CDK4 promoter [16]. Furthermore, artemusate (ART), a semisynthetic derivative of artemisinin, is found to cause G2/M cell cycle arrest in PC-3 cancer cells [17]. Other studies demonstrated that dihydroartemisinin (DHA), another derivative of artemisinin, reduces cell viability in a time- (30–120 µM) and concentration-dependent (400–3000 µM) manner, respectively [18], whereas DHA at 40 µM inhibited cell viability in a time-dependent (24–72 h) manner, without affecting normal human prostate epithelial cells. The suggested molecular mechanisms refer to the inhibition of the expression of cyclins D1, D2, and E and cyclin-dependent kinase (Cdk) 2, Cdk4, and Cdk6 proteins, the increased expression of the Cdk inhibitory proteins (Cip1/p21 and Kip1/p27), and the enhanced binding of Cdk inhibitors to Cdk1. Berberine induces cell death of cancer cells via modulations of the Bax/Bcl-2 ratio, disruption of the mitochondrial membrane potential, and activation of poly(ADP-ribose) polymerase and caspases [25]. Low concentrations of berberine (less than 50 µM) in RM-1 cells trigger G1 arrest associated with the activation of the p53-p21 cascade, whereas higher concentrations (over 50 µM) of berberine cause G2/M arrest. Studies in LNCaP xenografts in nude mice revealed that berberine delivered at 5 mg/kg/day inhibits tumor growth due to a reduction in AR expression [26]. Finally, berberine (at doses of 30 µM and 50 µM) enhances the radiosensitivity of human prostate cancer cells as it interferes with MAPK/caspase-3 and ROS pathways and inhibits the expression of HIF-1alpha and VEGF [27].

**Baicalin–Baicalein**

7-D-glucuronic acid-5,6-dihydroxyflavone is a flavone isolated from *Scutellaria baicalensis* (*Lamiaceae*) which is converted to baicalein, in vivo [20]. Baicalein inhibits cell proliferation of various cancer cell lines (bladder, bone, breast, colon, liver) and exhibits its cytotoxic/cytostatic effect through the induction of apoptosis in DU145, PC-3, LNCaP, and CA-HPV-10 prostate cancer cell lines when administered at concentrations of 150 µM or above for 2–4 days [21]. A study in LNCaP cells revealed that baicalein increases expression of cyclin-dependent kinase inhibitor [p27 (kip1)] and causes G1 cell cycle arrest. Similar results are found for baicalin [22]. Baicalin at doses of 50 µM and 125 µM also induces G1 arrest and apoptosis in DU145 cells through the inhibition of bcl-2, loss of Bax, and upregulation of Fas [23]. In PC-3 cells, baicalein results in apoptosis of DU145 cells through the inhibition of bcl-2, loss of Bax, and upregulation of Fas [23]. In PC-3 cells, baicalein reduces cell proliferation and induces apoptosis of DU145 cells through the inhibition of bcl-2, loss of Bax, and upregulation of Fas [23]. In PC-3 cells, baicalein causes cell death in LNCaP, DU145, and PC-3 cells. BA treatment (10 mg/kg for 15 days) of TRAMP mice results in inhibition of proliferation, tumor growth, and angiogenesis, and lowers the levels of the androgen receptor and cyclin D. This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
of JNK and ERK [34]. Likewise, capsaicin at varying concentrations (100–500 µM) triggers apoptosis both in androgen-dependent (LNCaP) and refractory (DU-145) prostate cancer cell lines and is associated with an increase of p53, p21, and Bax, a downregulation of both the prostate-specific antigen (PSA) and AR, and inhibition of proteasome activity [35].

Curcumin

Curcumin (diferulolylmethane), a diphenylheptanoid isolated from Curcuma longa (turmeric; Zingiberaceae) [36], was firstly described to induce apoptosis at doses of 5–50 µM in both androgen-dependent and refractory prostate cancers by interfering with the EGF-R signaling pathway [37]. Apoptosis is also prompted by curcumin’s interference with Bcl proteins, ROS generation, and the activation of mitochondrial related pathways. In PC-3 cells, the induction of apoptosis is attributed to apoptosis-inducing factor (AIF) and caspase-independent mechanisms [38]. Further studies revealed that curcumin decreases the proliferation of prostate cancer cells through the downregulation of the androgen receptor, whereas the activation of caspase-dependent apoptosis is a result of the downregulation of AP-1, NF-κB, cAMP response element-binding protein (CREB), PSA, and cyclin D [39]. In addition, prostate cancer cells are accumulated in the G1 phase by the proteasome-mediated downregulation of cyclin E and the upregulation of CDKs. In early-stage prostate cancer, curcumin acts as a chemopreventive agent affecting Wnt/β-catenin pathways, leading to autophagy [40]. Furthermore, curcumin suppresses glyoxalases, and thus modulates metabolic cellular pathways and acts as a histone acetyltransferase inhibitor [41].

Other studies have shown that curcumin prevents PC angiogenesis and metastasis by interfering with the cell cytoskeleton organization and the VEGF expression, respectively. Studies in DU145 xenografts, when curcumin is administered at doses of 5 mg/kg thrice a week for four weeks, show that invasion and metastasis suppression by curcumin can also be attributed to a reduction in metalloproteinases expressed by cancer cells [42]. Inhibition of PCa growth combined with a reduction in the metastasis rate caused by curcumin was also found in the first prostate-specific antigen (PSA) and AR, and inhibition of proteasome activity [35].

Daidzein

Daidzein (4’,7-dihydroxyisoflavone) is an isoflavone (steroid glucoside) isolated from soy beans (Glycine max) (Fabaceae) [45] and was firstly found to inhibit LNCaP and PC-3 cell growth. Even though daidzein does not influence the cell cycle of LNCaP and PC-3 cells, it decreases the expression of VEGF and AR genes in both cell lines and elevates the apoptosis percentage of LNCaP cells via the Akt pathway. Daidzein has also been found to cause modulations of the cyclin-dependent kinase-related pathway genes and a downregulation of EGF and IGF in LNCaP, PC-3, and DU145 cells [46]. Recent studies show that daidzein (110 µM for 48 h) can cause epigenetic modifications to DNA, such as the promoter CpG island demethylation of tumor suppressor genes, thus demonstrating a chemopreventive role [47].

Delphinidin

Delphinidin [2-(3,4,5-trihydroxyphenyl)chromenylium-3,5,7-triol] is an anthocyanidin (coumaroyl glucoside) mostly isolated from VioIa sp. (Violaceae) and Delphinium sp. (Ranunculaceae) and from many pigmented fruits and vegetables [48]. Delphinidin has been shown to induce a dose-dependent (30–180 µM) inhibition of cell growth and apoptosis in LNCaP, C4-2, 22Rv1, and PC-3 cells via the inhibition of NFκB signaling and the subsequent activation of caspases. Other studies propose that delphinidin induces cell growth inhibition and apoptosis of human PC-3 cells by inhibition of Notch-1 and/or NF-κB/P3K pathways and Wnt/β-catenin signaling [49]. In PC-3 xenografts in athymic nude mice, delphinidin administration (2 mg/animal thrice a week) resulted in a significant inhibition of tumor growth [50].

Ellagic Acid

Ellagic acid [(2,3,7,8-tetrahydroxy-chromeno[5,4,3-cde]chroomene-5,10-dione) (EA)] is a polyphenolic compound [51] found in various fruits such as blackberries (Rubus sp., Rosaceae), cranberries (Vaccinium sp., Ericaceae), pecans, pomegranates, raspberries, and strawberries. Studies in LNCaP cells show that EA can cause DNA damage while it downregulates antiapoptotic proteins, such as silent information regulator 1 (SIRT1), upregulates the tumor suppressor protein p21, and modulates the expression of AIF thus resulting in ROS-mediated and caspase-mediated apoptosis [52]. Recent studies in LNCaP cells also depict the antiangiogenic effects of EA (at concentrations of 25 and 50 µM) as it decreases the eicosanoid biosynthesis levels and suppresses the HO system. In androgen-independent PC cells, DU145 and PC-3, EA is found to induce cell cycle arrest in the S phase and apoptosis in a dose- (15–60 µmol/L) and time-dependent (24–120 h) manner, which is associated with a decrease in cyclin B1 and cyclin D1 levels and caspase-dependent pathways. Finally, EA is shown to confine the invasive potential of PC-3 and rat PC cell lines by interfering with protease activity and decreasing the secretion of matrix metalloproteinase MMP-2 [53].

Epigallocatechin-3-Gallate

Epigallocatechin-3-gallate [(2R,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)chroman-3-yl]3,4,5-trihydroxybenzoate] (EGCG) is a catechin derived mainly from tea (Camellia sinensis, Theaceae) [54]. Studies in LNCaP and DU145 cells have shown that EGCG causes G0/G1 cell cycle arrest and induces apoptosis in a cell-type-specific manner, irrespective of the p53 status of the cells [55]. EGCG treatment upregulates the expression of WAF1/p21, KIP1/p27, INK4a/p16, and INK4c/p18 and down-modulates the expression of cyclin D1, cyclin E, cdk2, cdk4, and cdk6 proteins while it increases the binding of cyclin D1 toward WAF1/p21 and KIP1/p27 and decreases the binding of cyclin E toward cdk2 [56]. In particular, EGCG-induced apoptosis in LNCaP cells is mediated through the modulation of p53 and NF-κB expression, subsequent change in the Bax/Bcl-2 ratio, and activation of caspases 3, 8, and 9 followed by poly (ADP-ribose) polymerase cleavage when administered in 20–80 µM for 24, 48, and 72 h [57]. Other molecular mechanisms involved in the induction of apoptosis refer to the inhibition of COX-2 without affecting COX-1 expression, both in LNCaP and PC-3 cells, and ERK1/2 activation.
via an MEK-independent, PI3-K-dependent signaling pathway in PC-3 cells [58, 59]. In addition, EGCG (10–60 µM) antagonizes androgen action at multiple levels, as it suppresses the activation of the agonist-dependent androgen receptor through Sp1-protein and AR-regulated gene transcription, thus resulting in the inhibition of PCa growth. Invasion and migration are also inhibited after EGCG treatment via modulations in VEGF, uPA, angiotropin 1 and 2, MMP-2, and MMP-9 [60]. Administration of 0.06% EGCG in TRAMP mice demonstrated that EGCG leads to attenuation of AR and the IGF-1 expression and decreases the MAPK signaling, thus inducing apoptosis without toxicity. Combimational treatment with 1 µM EGCG and cisplatin (2.5 or 5 µM) promotes the expression of the proapoptotic splice isoform of caspase 9 in PC-3 cells. Furthermore, oral administration of encapsulated EGCG reduces cell viability and induces apoptosis of DU145 PC cells. Finally, chitosan nanoparticles encapsulating epigallocatechin-3-gallate cause tumor growth inhibition and a reduction of secreted PSA levels [61, 62].

**Fisetin**

Fisetin (3,3′,4′,7-tetrahydroxyflavone) is a flavonol derived from many plants, such as *Acacia greggii* (*Fabaceae*) [63], which has been shown to have cytotoxic and cytostatic effects in numerous cancer cell lines (breast, blood, liver, lung, melanoma, ovary, pancreas) [5]. Studies in prostate LNCaP cells revealed that fisetin, when administered at 10–60 µM for 24 and 48 h, causes G1 cell cycle arrest by downregulating cyclins and cyclin-dependent kinases and triggers both caspase-dependent and -independent apoptotic pathways. Fisetin also decreases AR levels and competes with androgen action at multiple levels, as it suppresses the activation of the agonist-dependent androgen receptor through Sp1-protein and AR-regulated gene transcription, thus resulting in the inhibition of PCa growth. Invasion and migration are also inhibited after EGCG treatment via modulations in VEGF, uPA, angioprotein 1 and 2, MMP-2, and MMP-9 [60].

Administration of 0.06% EGCG in TRAMP mice demonstrated that EGCG leads to attenuation of AR and the IGF-1 expression and decreases the MAPK signaling, thus inducing apoptosis without toxicity. Combimational treatment with 1 µM EGCG and cisplatin (2.5 or 5 µM) promotes the expression of the proapoptotic splice isoform of caspase 9 in PC-3 cells. Furthermore, oral administration of encapsulated EGCG reduces cell viability and induces apoptosis of DU145 PC cells. Finally, chitosan nanoparticles encapsulating epigallocatechin-3-gallate cause tumor growth inhibition and a reduction of secreted PSA levels [61, 62].

**Genistein**

Genistein (4′,5,7-trihydroxyisoflavone) is a flavanone isolated from *Glycine max* (*Fabaceae*) [80]. Genistein acts as a tyrosine protein kinase inhibitor, thus causing a dose-dependent growth inhibition of DU145, PC-3, and LNCaP PCa cell lines via the suppression of protein phosphorylation [81]. Another study conducted in LNCaP and PC-3 cells concluded that genistein-medi- ated growth inhibition is caused by the downregulation of survivin, DNA topoisomerase II, cell division cycle 6 (CDC6), and mitogen-activated protein kinase 6, and the augmented regulation of glutathione peroxidase. In PC-3 cells, suppression of cell growth is also attributed to the downregulation of the IGF-1/IGF-1R signaling pathway [82, 83]. Recent studies have shown that genistein exerts its apoptotic and antiproliferative effects by regulating microRNAs. Thus, genistein is found to cause apoptosis through the downregulation of miR-1260b and its target genes sRRP1 and Smad4 [84]. Furthermore,
studies in PC-3 and DU145 cells show that genistein inhibits cell growth by modulating miR-34a and HOTAIR expression [85]. Apoptosis is also attributed to various mechanisms such as inhibition of proteasomal chymotrypsin-like activity, inactivation of NF-κB, and inhibition of Akt [86]. Genistein in high doses has inhibitory effects due to modulating the expression of the AR function, but its growth inhibitory effect is independent of PSA expression [87]. However, genistein at physiological concentrations (0.5–5 µM) activates mutant types of AR present in advanced PC [88]. Moreover, numerous genes involved in cell adhesion and migration (MMP-9, protease M, uPAR, VEGF) are downregulated in PC-3 cells after genistein treatment [89]. A recent study showed that genistein also targets cancer stem cells (CSC) and can contribute to an anti-CSC effect, which is important for inhibiting PC relapse and metastasis [90]. Epigenetics effects of genistein administrated at 40 µM are also found in DU-145 and PC-3 cells, as it reverses DNA hypermethylation of tumor suppression genes leading to their activation and subsequent inhibition of cancer progression [91].

In vivo studies reveal a chemopreventive activity of genistein. Lo-bund-Wistar (L–W) rats that are susceptible to spontaneous and induced metastasizing adenocarcinomas in the prostate-seminal vesicle complex were found to exert a reduced incidence of induced prostate-related cancer after genistein feeding [92]. TRAMP mice fed with a phytoestrogen-rich diet containing 100, 250, or 500 mg of genistein per kg showed a low percentage of PD (poorly differentiating) developed cancer [93]. Oral administration of genistein in PCa patients does not affect PSA levels, yet a more recent study showed that 30 mg of synthetic genistein, given daily for three to six weeks, reduces serum PSA levels [94]. In addition, combinational treatment of metastatic-castration-resistant PCa with Cabazitaxel and genistein was found to have an enhanced apoptotic effect [95]. Clinical use of genistein against cancer is limited by its extremely low aqueous solubility, poor bioavailability, and pharmacokinetics. Based on structural analogy with steroidal compounds, liposomal vehicle compositions are designed and optimized for maximum incorporation of genistein’s flavonoid structure. The pharmaceutical design of genistein-loaded liposomes seems to improve cellular delivery and specific proapoptotic effectiveness of the incorporated drug against various cancers [96]. Finally, a meta-analysis of studies that investigated soy food consumption and risk of PCa was reported. The results of this meta-analysis suggested that high consumption of non-fermented soy foods (e.g., tofu and soybean milk) might significantly decrease the risk of PC [97].

Ginsenosides

Ginsenosides are compounds isolated exclusively from the plants of the genus *Panax* (Araliaceae). Ginsenoside Rg3 is one of the bioactive components found in ginseng root extract [98]. Rg3 has been found to arrest LNCaP cells at the G1 phase and subsequently induce a caspase3-mediated apoptosis mechanism by activating the expression of cyclin-kinase inhibitors, p21 and p27. Rg3 with an IC50 of 8.4 µM was also shown to modulate the expression of MAP kinases, inducing cell detachment of LNCaP and PC-3 cells [99]. Further studies suggest that Rg3 interferes with the p38 MAPK pathway, causing a downregulation of AQP1 expression (water channel protein, involved in cell migration), which leads to the inhibition of cell migration and metastasis of PC-3M cells [100]. Combinational treatment of Rg3 with various chemotherapeutics (docetaxel, cisplatin, and doxorubicin) exhibits a more effective inhibition of PC cell growth in LNCaP, DU145, and PC-3 cells through the suppressed activation of NF-κB [101]. Rh2 ginsenoside (β-D-glucopyranoside) is a glycoside isolated from the root of *Panax ginseng* [102], which is also found to have antiproliferative effects and cause cell detachment, with an IC50 of 5.5 µM in LNCaP and PC-3 cells, through modulations in MAP kinase expression [99]. Rh2 (0.5–40 µM) and paclitaxel act synergistically and cause a significant decrease of LNCaP cell proliferation and LNCaP tumor growth [103]. Oral administration of Rh2 at a dose of 120 mg/kg in a PC-3 human xenograft model in nude mice was found to decrease tumor cell proliferation, significantly delay the tumor growth, and eventually increase the rate of apoptosis [104].

Glycyrrhiza Compounds

The hexane/ethanol extract of *Glycyrrhiza uralensis* (Fabaceae) (HEGU), comprising the two active compounds isoaugustone A and licoriciodin, has been shown to exert anticarcinogenic effects [107]. HEGU and its active flavonoid compound isoaugustone A (5,7,3′,4′-tetrahydroxy-6,5′-diprenylisoflavone) were found to induce apoptosis of androgen-insensitive DU145 cells by augmenting the levels of cleaved caspase-9, caspase-7, caspase-3, and poly(ADP-ribose) polymerase (PARP) in combination with mitochondrial membrane depolarization and cytochrome C release to the cytosol [107]. Additionally, HEGU and its active component, isoaugustone A, diminish DNA synthesis in a dose-dependent manner, reduce the levels of CDK2, CDK4, cyclin A, and cyclin D1 proteins and decrease the CDK2 activity causing G1 phase arrest in DU145 cells [108]. HEGU also contains licoriciodin, which has been shown to act as a potent antimetastatic agent. Licoriciodin inhibits the metastatic and invasive capacity of malignant PCa cells by suppressing the expression of adhesion molecules and restricting the secretion and activation of the matrix metalloproteinases (MMP-2, MMP-9), TIMP-1, urokinase-type plasminogen activator, and VEGF [109]. Licochalcone (LA) (3-dimethylallyl-4,4′-dihydroxy-6-methoxy-chalcone) is an estrogenic flavonoid isolated from licorice root (*Glycyrrhiza glabra*) [110]. LA is found to cause G2/M cell cycle arrest of PC-3 prostate cells, accompanied with the suppression of cyclin B1 andcdc2 [111]. LA can also induce caspase-dependent and autophagy-related cell death in LNCaP cells [112]. Glycyrrhetic acid (18β-glycyrrhetic acid) is an active triterpenoid metabolite abundantly present in licorice roots, which inhibits proliferation and growth of DU-145 cells (10–500 µM) by the induction of apoptosis. It also reduces HUVEC tube formation and prevents the invasion of DU-145 PC cells on matrigel-coated
well via the downregulation of NF-κB (p65), VEGF, and MMP-9 expression [113]. In LNCaP androgen-dependent PC cells, glycyrrhetinic acid was shown to reduce the proliferation rate as well as the production of prostate-specific antigen [114].

Gossypol

Gossypol [2,2-bis-(formyl-1,6,7-trihydroxy-5-isopropyl-3-methylnaphthalene) is a polyphenolic aldehyde present in cottonseed (Gossypium hirsutum, Malvaceae) [115], which has been shown to exert antiproliferative and cytotoxic effects in PC cell lines and implanted MAT-LyLu cells in Copenhagen rats. In MAT-LyLu cells, gossypol modulates TGFβ1 and Akt signaling, altering the expression of regulatory proteins such as cyclin D1, Cdk4, and phospho-Rb and finally causing G0/G1 cell cycle arrest when delivered at 0.5–4.0 µM for 24, 48, and 72 h [116]. Gossypol has also been found to induce G0/G1 cell cycle arrest in PC-3 cells and prostatic cells from human benign prostatic hyperplasia (BPH) patients as it evokes alterations in TGF-β1 expression levels. In addition, gossypol at doses of 5–20 µM downregulates Bcl-xL resulting in the inhibition of the heterodimerization of Bcl-xL/Bcl-2 with proapoptosis molecules, which is followed by caspase-dependent and -independent apoptotic processes [117]. Recently, gossypol was shown to induce autophagy in androgen-independent PCA cells that have high levels of Bcl-2 and are resistant to apoptosis, both in vitro and in vivo (PC xenografts), by interrupting the interactions between Beclin1 and Bcl-2/Bcl-xL at the endoplasmic reticulum, thus releasing the BH3-only pro-autophagic protein Beclin1, which in turn triggers the autophagic cascade [118].

Gossypol also inhibits metastatic behaviors (adhesion, migration, and invasion) and angiogenesis. In PC-3 cells, GP suppresses AP-1 and NF-κB activity, resulting in the inhibited secretion of the urokinase plasminogen activator and VEGF in combination with the downregulation of chemokine receptor 4 [119]. In human prostate tumor PC-3 xenografts in mice, gossypol at a dosage of 15 mg/kg/day prompts the suppression of angiogenesis in the solid tumors as it blocks the activation of VEGF receptor 2 kinase causing the subsequent suppression of phosphorylation of focal adhesion kinase, extracellular signal-related kinase, AKT kinase, and key intracellular proangiogenic kinases such as Src family kinase [120].

Combination treatment of docetaxel and gossypol was found to be cytotoxic and apoptotic in PC-3 cells in a dose- and time-dependent manner [121]. Gossypol (0.5–10 µM) and sorafenib (2–20 µM) were found to induce cell death via apoptotic pathways in DU-145 cells and via autophagic pathways in PC-3 cells, respectively [122]. Finally, administration of AT-101 (gossypol), at 20 mg/day for 21 days, was found to decline PSA levels in some men with chemotherapy-naive, castrate-resistant PCA [123].

Luteolin

Luteolin (3′,4′,5,7-tetrahydroxyflavone) is a flavone isolated from Terminalia chebula (Combretaceae) [124]. Luteolin induces apoptosis in various cancer cell lines (bladder, blood, bone, breast, colon, liver, lung) [5]. Induction of apoptosis in prostate DU145 cells is attributed to the up-regulation of death receptor 5 when administered at concentrations of 5–40 µM for 24 h [125]. It also suppresses cell growth and proliferation of DU145, PC-3 cells, and PC-3 in vivo models by inhibiting insulin like growth factor 1 (IGF-1) and the subsequent activation of IGF-1R, AKT, EGFR, and MAPK/ERK signaling [126]. In PC-3 cells, luteolin at doses of 1–100 µM acts as a ligand for the nuclear type II ([3][H] estradiol binding site resulting in epigenetic changes in various genes (CCNA2 CCNE2, CDC25A, etc.) involved in the cell cycle [127]. Luteolin (10–40 µM) also suppresses angiogenesis and invasion through the downregulation of VEGF-2R in PC-3 cells in vitro and in vivo and through the downregulation of AR and PSA expression in LNCaP cells, respectively [128].

Lycopene

Lycopene (ψ,ψ-carotene) is a carotenoid mostly isolated from Solanum lycopersicum (tomato; Solanaceae) [129]. Extensive research has been conducted both in vitro and in clinical trials in order to identify the mechanisms of lycopene’s cytotoxic and chemopreventive effects against PCa. More specifically, lycopene is found to induce cell cycle arrest and apoptosis in PC-3, LNCaP, DU145 cells, and DU145 xenografts. In LNCaP cells, lycopene induces mitochondrial-related apoptosis when delivered in physiologic concentrations (0.3–3.0 µM), whereas in high concentrations (> 5 µM), it leads to DNA damage [130]. A lycopene-mediated reduction in cholesterol synthesis was also shown through the activation of the PPAR-γRXα-ABC1 pathway both in LNCaP and DU145 cells [131]. In PC-3 cells and xenograft models, high concentrations of lycopene (16 mg/kg twice a week for seven weeks) induced apoptosis through alterations in IGF-1, IGF-IR, and IGFBP-3 expression levels [132]. Both in LNCaP and PC-3 cells, G0/G1 cell cycle arrest is caused by lycopene via its interference with phosphatydilinositol 3-kinase signaling, which leads to a decrease in Cdk4, cyclins D1 and E, and Rb phosphorylation. Cell cycle arrest and apoptosis are also attributed to a reduced activation of NF-κB in combination with an increased expression of p21, p27, and p53, shifting the Bax:Bcl-2 ratio. Migration and invasion of LNCaP and PC-3 cells are also suppressed by lycopene via a reduction in the expression levels of integrins [133, 134].

Moreover, lycopene acts also as a chemopreventive agent, delaying or preventing the establishment of PCA. In LNCaP cells, lycopene exerts its chemopreventive effect through an increase in detoxification proteins and subsequent prevention of DNA damage, and suppresses ROS generation and oxidative stress as well [135]. Chemopreventive activity of lycopene was also found in TRAMP mice fed 28 mg lycopene per kg for 20 weeks [136].

In clinical trials, lycopene was found to be more of a chemopreventive agent than a cytostatic agent of established tumors. Lycopene given to patients at a dose of 4 mg twice a day for one year was shown to delay or prevent high-grade prostate intraepithelial neoplasia from developing into PC [137], whereas whole tomato lycopene administration in men with established PCA at a dose of 10 mg per day for one year resulted in a reduced PSA velocity [138]. Finally, recent epidemiologic studies have suggested a potential benefit of lycopene against the risk of PCa. Five studies support a 30 to 40% reduction in risk associated with high tomato or lycopene consumption, three are consistent with a 30% reduction in risk, but the results were not statistically significant, and seven were not supportive of an association [139].
Compounds Derived from *Magnolia* sp.

Honokiol (2-(4-hydroxy-3-prop-2-enyl-phenyl)-4-prop-2-enylphenol), a lignan isolated from *Magnolia officinalis* (*Magnoliaceae*) [140], has been found to decrease the viability of PC-3 and LNCaP human PCa cells in a dose- and time-dependent manner through G0–G1 phase cell cycle arrest. Honokiol also triggers apoptotic DNA fragmentation in a dose- (20–60 µM) and time-dependent (24–72 h) manner both in androgen-dependent and -independent prostate cell lines (PC-3, LNCaP, and C4-2), which is correlated with the induction of Bax, Bak, and Bad in addition to a decrease in Bcl-xl and Mcl-1 protein levels [141, 142]. Likewise, honokiol treatment exhibits growth inhibitory, apoptotic, and antiangiogenic effects on PC xenografts fed with 1–3 mg honokiol thrice a week [141].

Magnolol (4-allyl-2-(5-allyl-2-hydroxy-phenyl)phenol) is a hydroxylated biphenyl (lignan) isolated from the root and stem bark of *Magnolia officinalis* [140]. Magnolol was shown to induce apoptotic cell death in a dose-dependent (10–60 µM) manner in PC-3 cancer cells through epidermal growth factor receptor (EGFR)-mediated signaling transduction pathways and also inhibits the adhesion, invasion, and migration of PC-3 human prostate [143].

Obowatal (5-prop-2-ethyl-3-(4-prop-2-enylphenyl)benzene-1,2-diol), a biphenyl ether lignan isolated from *Magnolia obovata* [144], engages LNCaP and PC-3 cells to apoptotic cell death through the inhibition of NF-κ B activity and also enhances the cell growth inhibition of chemotherapeutics (docetaxel, paclitaxel, cisplatin, and doxorubicin) [145].

Oridonin

Oridonin (7a,20-epoxy-1a,6b,7,14-tetrahydroxy-Kaur-16-en-15-one) is an isoprenoid (kaur-type diterpenoid) isolated from *Rabdosia rubescens* (Labiatae) [146]. Oridonin has been found to elicit Go/G1 cell cycle arrest and apoptosis of LNCaP cells through the upregulation of p53 and Bax and the downregulation of Bcl-2 expression in a dose-dependent manner [147]. Oridonin has also been shown to trigger G2/M cell cycle arrest, autophagy, and apoptosis in LNCaP and PC-3 cells by upregulating the expression of p21 in a time- (12–72 h) and dose-dependent (10, 25–100 µM) manner [148].

Phenethyl-Isothiocyanat

Phenethyl-isothiocyanate [(2-isothiocyanato-ethyl)benzene] (PEITC) is one of the most extensively studied isothiocyanates (ITCs) that is found in cruciferous vegetables such as broccoli (*Brassica oleracea*) and watercress (*Nasturtium officinale*) of the *Brassicaceae* family, Brussels sprouts, cabbage, Japanese radish, and cauliflower [149].

In DU145 cells, PEITC (1–20 µM) suppresses cell proliferation and causes cell cycle arrest in the G2/M phase and apoptosis in a dose-dependent manner. The mechanism of PEITC action suggests that it increases p53 expression while it reduces CDC25C, inhibits the JAK-STAT3 signal cascade, and modulates the activation of the caspases pathway [150].

PEITC (5–20 µM) has also been described to induce G2-M cell phase arrest and inhibit the expression of α- and β-tubulin proteins in LNCaP, DU145, PC-3, and C4-2B cells through reactive oxygen species generation and protein degradation [151]. Other studies show that PEITC represses the androgen receptor’s expression through the inhibition of Sp1 transcription, thus mediating growth arrest both in androgen-dependent and -independent PC cells [152].

In LNCaP and PC-3 cells, PEITC (2.5 and 5 µM) triggers apoptotic mechanisms via the activation of Bax and ROS production, whereas it downregulates survivin and X-linked inhibitors of apoptosis [153]. It is noteworthy that PEITC induces both apoptotic and autophagic cell death in PC-3 and LNCaP cells regulated by Atg5 protein [154].

Furthermore, PEITC (2.5 and 5 µM) was shown to restrain migration of PC-3 and LNCaP cells. The suggested mechanisms propose that PEITC treatment leads to inactivation of Akt with a subsequent suppression of VEGF and interference with the Notch pathway [155].

PEITC was found to cease angiogenesis both in human umbilical vein endothelial cells (HUVEC) and in ex vivo experiments (chicken egg chorioallantoic membrane assay) [156]. In xenograft models, similar results were observed. When administered orally at a dose of 12 µM/day for five days per week, PEITC delays growth of PC-3 xenografts in athymic mice [157]. In an LNCaP xenograft model, PEITC regulates tumor growth by suspending the expression of the platelet/endothelial cell adhesion molecule (PECAM1-CD31) and by the suppression of angiogenesis [158]. Studies in transgenic adenocarcinoma of the mouse prostate, in mice fed with 3 µmol PEITC/g for 19 weeks, also revealed inhibition of prostate carcinogenesis induced by the overexpression of E-cadherin and autophagy-regulated pathways [159]. Finally, the combination treatment of PEITC (2 µM) with docetaxel (1 nM) increased the rate of apoptosis in PC-3 and DU145 cells by the suppression of Bcl2 and the induction of Bax and Bak proteins, while combinational treatment of PEITC with adriamycin and etoposide led to PC-3 cell death through the downregulation of protein kinase C and inhibition of telomerase [160].

Quercetin

Quercetin (2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one) is a polyphenol (flavonoid) isolated from grapes (*V. vinifera, Vitaceae*) [63]. Quercetin was found to reduce cell growth and cause apoptosis in various cell lines (bladder, blood, bone, breast, colon, liver, lung, mouth, esophagus) [5]. Quercetin reduces cell growth of PC-3, LNCaP, and DU145 PC cells in a dose-dependent manner by interfering with the expression levels of numerous oncogenes and tumor suppressor genes. In LNCaP, quercetin causes G2/M cell cycle arrest due to p21 upregulation and cyclin B suppression [161]. Studies in PC-3 cells suggest that growth inhibition is caused by a decreased phosphorylation of ErbB-2, ErbB-3, c-Raf, MAPK kinase 1/2 (MEK1/2), and MAPK, Akt-1 and is combined with a reduced metastatic rate and drug resistance. In addition, quercetin has been described as interfering with c-Jun and SP1, causing AR reduction [162].

Quercetin at doses of 5–100 µM was also shown to provoke apoptosis in PCa cell lines through inhibition of fatty acid synthase and downregulation of heat shock protein 90 [163]. More studies showed that quercetin induces G2/M cell cycle arrest and apoptosis of PC-3 cells via a decrease in Cdc2/Cdk-1, cyclin B1, phosphorylated pRb, IGF-1, and IGF-II and an increase in p21, Bax, and caspase-3, and modulations of the Bcl-2/Bax ratio [164]. In addition, quercetin augments TRAIL-induced cytotoxicity through caspase

Gioti K, Tenta R. Bioactive Natural Products... Planta Med 2015; 81: 543–562

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
Silibinin treatment (50 µM) in LNCaP and DU145 cells [175]. Moreover, in vitro and in vivo studies in prostate xenograft mouse models depict quercetin's antiangiogenic effects as it interacts with the VEGF-R2-regulated autophagic (AKT/mTOR/PI3K/AKT) pathway when administered at a dose of 20 mg/kg/day [166].

**Sanguinarine**

Sanguinarine (13-methyl-[1,3]benzodioxolo[5,6-c]-1,3-dioxolo[4,5-i]phenanthridinum) is a benzophenanthridine alkaloid derived from *Sanguinaria canadensis* (Papaveraceae) (the bloodroot plant) [167]. In LNCaP and DU145, sanguinarine causes G0/G1 cell cycle arrest in a dose-dependent manner (0.1–2 µM) by interfering with the expression of cyclin kinase inhibitors p21/WAF1 and p27/KIP1, cyclin E, D1, and D2 and cyclin-dependent kinases 2, 4, and 6 [168]. Sanguinarine has also been shown to induce PCa cells growth and induce apoptosis at concentrations of 0.1–8 µM. This has been attributed to the suppressed expression of survivin and protein degradation via the ubiquitin-proteasome system [169]. Treatment of DU145, C4-28, and LNCaP cells with sanguinarine (2 µM and 4 µM, for 1–12 h) revealed that it restricts PCa growth, migration, and invasion through Stat3 inactivation [170]. In DU145 cell xenografts, the administration of sanguinarine (0.25 mg/kg and 0.5 mg/kg) reduced tumor weight and volume after 31 days [169].

**Silibinin**

Silibinin or silybin (3,5,7-trihydroxy-2-[(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-1,4-benzodioxan-6-yl)-4-chromanone) is a flavolignan isolated from the fruits of *Silybum marianum* (Asteraceae) [171]. Silibinin has been described as causing G1 cell cycle arrest and decreasing both intracellular and secreted forms of PSA in LNCaP cells in a dose- (50–200 µM) and time-dependent (12–48 h) manner, which has been attributed to modulations of retinoblastoma (Rb) levels and its phosphorylation status combined with a decreased activity of cyclin-dependent kinases (CDKs) [172]. Further studies in LNCaP cells revealed that the decrease of PSA was caused by the downregulation of the androgen receptor’s coactivator and the epithelium-derived Ets transcription factor (PDEF) [173]. Silibinin was not only found to suppress global protein translation, thus inhibiting HIF-1 alpha expression and telomerase activity [174], but also, as a lipophilic compound, was found to compete in the EGF-erbB1 interaction and to interfere with the mitogenic signaling and DNA synthesis in LNCaP and DU145 cells [175].

In DU145 cells, silibinin treatment (50–200 µM, for 24 and 48 h) caused G1 cell cycle arrest mediated by a decrease in p21 and p27 expression [176]. Silibinin also represses Wnt/LRp6 signaling and induces apoptosis through the inhibition of active Stat3 while it sensitizes cells to TNFα-induced apoptosis through constitutive NF-κB inactivation [177].

Silibinin at pharmacologically achievable concentrations (0.02–20 µM) causes G1 and G2/M cycle arrest in PC-3 cells by interfering with the expression levels of cyclins and CDKs [178] and the insulin-like growth factor I receptor-mediated signaling pathway [179].

Silibinin has also been found to prevent migratory and invasive potential of PC-3, PC-3MM2, C4-28 LNCaP, and DU145 cells [180]. In general, silibinin inhibits the epithelial to mesenchymal transition of PC cells through interference with the NF-κB pathway and subsequent downregulation of ZEB1 and SLUG transcription factors and by downregulating vimentin and MMP2 [181]. Silibinin also exerts inhibitory effects in high bone metastatic prostate models and prevents PC cells-induced osteoclastogenesis [182].

In xenograft models, silibinin is described as having antiangirotive, proapoptotic, and antiangiogenic effects. Studies in PC-3 tumor xenografts in athymic mice revealed that silibinin effects are attributed to an increase in IGFBP-3, Cip1/p21, and Ki67/p27 levels, activation of ERK1/2, and a decrease in Bcl-2 and VEGF levels. In TRAMP mice fed 0.5% and 1% w/w silybin-phytodietes for 11 weeks, silibinin blocked PCa growth and progression through IGF-IGFBP-3 axis modulation, whereas it suppressed tumor microvessel density via a decrease in VEGF, VEGFR-2, MMPs, and vimentin [183]. Finally, in patients receiving a silybin-phytosome (13 g/day) for 14–31 days, high blood concentrations were found transiently, but low levels of silibinin were detected in prostate tissue. Silibinin’s lack of tissue penetration may be explained by its short half-life, the brief duration of therapy in this study, or an active process of removing silibinin from the prostate [184].

**Sulforaphane**

Sulforaphane (1-isothiocyanato-4-methylsulfinylbutane) (SFN) is a natural isothiocyanate found in many cruciferous vegetables, firstly isolated from *Brassica oleracea* (broccoli; *Brassicaceae*) [185]. Many studies have shown that SFN can provoke cell cycle arrest and apoptosis in androgen-dependent and androgen-refractory PC cell lines. SFN (IC50 of 10 µM) causes G2/M phase arrest in DU145 cells [186] and G1 cell cycle arrest in LNCaP and PC-3 cells. The antiproliferative effects of SFN at doses of 10–40 µM involve mechanisms such as the modulation of methyltransferases expression, which leads to an increase in cyclin D2 in LNCaP cells, and protein synthesis inhibition through decreased phosphorylation of mTOR substrates in PC-3 cells [187]. Apoptosis is induced through caspase activation in LNCaP cells, ROS generation that triggers intrinsic and extrinsic caspase cascades in PC-3 and DU145 cells [186], and inhibition of histone deacetylase 6 in BPH-1, LNCaP, and PC-3 cells [188,189]. SFN has also been reported to inhibit HIF-1α with a subsequent decrease in VEGF expression, thus preventing prostate cell angiogenesis [190]. Cell migration of PC-3 and LNCaP cells is also restricted by SFN when delivered at 20 µM for 8 and/or 24 h due to modulations of the Notch pathway [191].

In vivo studies have deduced that oral administration of a daily dose of 7.5 mmol per animal for 21 days in PC-3 xenografts in nude mice causes a > 50% reduction in tumor volume due to a decrease in HDAC activity. Finally, TRAMP mice that were fed broccoli sprouts exhibited a decrease in prostate tumor growth [192].

**Thymoquinone**

Thymoquinone (2-isopropyl-5-methylbenzo-1,4-quione) (TQ) is a phytochemical isolated from the plant *Nigella sativa* (*Ranunculaceae*) [193]. TQ (40–100 µM) has been found to reduce cell
growth both in androgen-dependent (LNCaP, C4-B) and androgen-refractory (DU145, PC-3) PC cell lines. Cell growth reduction is attributed to a decrease in AR and E2F-1 as well as the E2F-1 regulated proteins [194]. In PC-3 and C4-B cells, TQ (IC50 values of approximately 50 and 80 mM) was shown to induce apoptosis through increased ROS generation and decreased GSH levels [195]. Other studies in PC-3 cells also demonstrated that TQ inhibits cell proliferation through suppression of AKT and prevents tumor angiogenesis via the repressed activation of induced extracellular signal-regulated kinase by VEGF [196].

Ursolic Acid

Ursolic acid ((3β)-3-hydroxyurs-12-en-28-oic acid) (UA) is a pentacyclic triterpenoid compound derived from Cornus officinalis (Cornaceae) [197].

In PC-3 cells, UA evokes apoptosis via extrinsic and intrinsic apoptotic pathways while it confines cell invasion by inhibiting Akt and downregulating matrix metalloproteinase-9 [198]. UA was also shown to induce apoptosis through JNK activation, which results in Bcl-2 phosphorylation and degradation causing the activation of caspase-9, both in androgen-dependent (LNCaP) and androgen-independent PCa cell lines (LNCaP-AI and DU145 cells) [199]. In addition, UA displays a role in the suppressed activation of NF-κB and STAT3 by downregulating the expression of various NF-κB and STAT3 gene products involved in proliferation, survival, and angiogenesis, and thus induces apoptosis in PCa cell lines (LNCaP, DU145) and TRAMP mice [200]. UA was also found to restrict metastasis through the suppression of CXCR4 expression in PC both in vitro (PC-3, LNCaP, DU145 cells) and in vivo (TRAMP mice fed 1% w/w UA for 6 to 8 weeks) [201]. Finally, in DU145 cells, UA and its cis- and trans-3-O-p-hydroxycinnamoyl esters derived from American cranberries, such as Vaccinium macrocarpon, were shown to limit tumor cell growth at micromolar concentrations through matrix metalloproteinase (MMP-2 and MMP-9) inhibition [202].

Conclusion

In this review article, the most promising bioactive natural products and their respective mechanisms of action for the treatment of PCa are presented, as they affect the processes of cell proliferation, cell cycle control, apoptosis, autophagy, tumor angiogenesis, invasion, and metastasis (Fig. 1, Table 1). Indeed, a variety of natural products have gained widespread use in the clinical treatment of a number of malignancies, such as carcinomas of the colon, breast, ovary, lung, and prostate. Unlike conventional chemotherapy, targeted agents have a relatively wide therapeutic window and have nonoverlapping toxicity profiles. Natural compounds that interfere with essential carcinogenic pathways, without demonstrating severe side effects, could exert a significant role as chemotherapeutic or chemopreventive agents, thus offering an alternative or complementary approach to the treatment of cancer. However, further in vivo studies should be con-
<table>
<thead>
<tr>
<th>Compound</th>
<th>In vitro</th>
<th>In vivo</th>
<th>Mechanism</th>
<th>Molecular pathway</th>
<th>Plant</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apigenin (flavonoid)</td>
<td>DU145, LNCaP, PC-3, 22Rv1</td>
<td>G1 cell cycle arrest, Apoptosis</td>
<td>Cyclin D1,D2,D3, Bax/Bcl-2 ratio, NF-κB, ROS, IGF-IR, PI3k/Akt</td>
<td>Anthemis sp. (Asteraceae)</td>
<td>[4–14]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Epigenetic effects</td>
<td>HDACs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No invasion</td>
<td>Actin, FAK/scr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Antiangiogenesis</td>
<td>TGF-β, VEGF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LNCaP, PC-3, C4-28</td>
<td>22Rv1, PC3 xenografts, TRAMP mice</td>
<td>Growth inhibition</td>
<td>IGF-I/IGFBP-3, PI3k/Akt/FoxO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artemisin artemisate dihydroartemisin</td>
<td>LNCaP, PC-3, PC-3, DU145</td>
<td>G1 cell cycle arrest</td>
<td>CDK4</td>
<td>Artemisia annua (Asteraceae)</td>
<td>[15–19]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cell cycle arrest</td>
<td>Caspases 8, 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baicalin-baicalein (flavonoid)</td>
<td>DU145, PC-3, LNCaP, CA-HPV-10</td>
<td>G1 cell cycle arrest, Apoptosis</td>
<td>Cyclin, CDK, CDKs inhibitors, Bax/Bcl2 ratio, caspases, cytochrome c</td>
<td>Scutellaria baicalensis (Lamiaceae)</td>
<td>[20–23]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Apoptosis</td>
<td>P27(kip1), Bcl-2, Bax, fas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berberine (alkaloid)</td>
<td>DU145, PC-3, LNCaP</td>
<td>G1 cell cycle arrest, Apoptosis</td>
<td>Cyclins, CDKs, CDKs inhibitors, Bax/Bcl2 ratio, caspases, cytochrome c</td>
<td>Berberis sp. (Berberidaceae)</td>
<td>[24–27]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LNCaP xenografts</td>
<td>Tumor growth</td>
<td>Tumor growth, antiangiogenesis</td>
<td>Cyclin D, AR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betulinic acid (triterpene)</td>
<td>LNCaP, PC-3, DU145</td>
<td>Apoptosis, antiangiogenesis</td>
<td>NF-κB, survivin, VEGF</td>
<td>Betula papyrifera (Betulaceae)</td>
<td>[28–31]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRAMP mice</td>
<td>Tumor growth, antiangiogenesis</td>
<td>Cyclin D, AR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capsaicin (vanilloid)</td>
<td>PC-3, DU145, LNCaP</td>
<td>Apoptosis</td>
<td>ROS, JNK, ERK, p53, p21, Bax, PSA, AR</td>
<td>Capsicum sp. (Solanaceae)</td>
<td>[32–35]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PC-3 xenografts</td>
<td></td>
<td>PSA, AR</td>
<td></td>
<td></td>
<td>cont.</td>
</tr>
<tr>
<td>Compound</td>
<td>In vitro</td>
<td>In vivo</td>
<td>Mechanism</td>
<td>Molecular pathway</td>
<td>Plant</td>
<td>References</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------------------------------------</td>
<td>------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Curcumin (diphenylheptanoid)</td>
<td>PC-3, LNCaP</td>
<td></td>
<td>Cycle arrest</td>
<td>Cyclins, Cdk, Akt</td>
<td>Curcuma longa (Zingiberaceae)</td>
<td>[36–44]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LNCaP xenografts</td>
<td></td>
<td>i Angiogenesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Curcumin-loaded</td>
<td></td>
<td>i Growth</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLGA nanospheres</td>
<td></td>
<td>β-catenin, NF-κB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cellulose, Nanoparticles, Lipid-based carriers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Apoptosis</td>
<td>EGF-R, Bcl, ROS, Akt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Metabolism</td>
<td>Glyoxylase</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>i Angiogenesis</td>
<td>VEGF, MMPs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daidzein (isoflavone)</td>
<td>PC-3, DU145, LNCaP</td>
<td></td>
<td>Cycle arrest</td>
<td>CDKs, IGF, EGF, VEGF</td>
<td>Glycine max (Fabaceae)</td>
<td>[45–47]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>i Cell growth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Apoptosis</td>
<td>Akt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delphinidin (anthocyanidin)</td>
<td>LNCaP, C4-2, 22Rnu1, PC3</td>
<td></td>
<td>i Cell growth, Apoptosis</td>
<td>Caspases, NF-κB/P3K, Notch-1, Wnt/β-catenin</td>
<td>Delphinium sp. (Ranunculaceae)</td>
<td>[48–50]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PC3 xenografts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ellagic acid (polyphenol)</td>
<td>LNCaP</td>
<td></td>
<td>Apoptosis</td>
<td>SIRT1, p21, AIF, ROS, caspases</td>
<td>Rubus sp. (Rosaceae)</td>
<td>[51–53]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DU145, PC-3</td>
<td></td>
<td>i Eicosanoid, HO system</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>An angiogenesis</td>
<td>Cyclin D1, B1, Bcl2/Bax, caspases</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G0/G1 cycle arrest</td>
<td>MMP-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epigallocatechin-3-gallate (catechin)</td>
<td>LNCaP, DU145, PC-3</td>
<td></td>
<td>Cell cycle arrest</td>
<td>1 WAF1/p21, KIP1/p27, INK4, i-cyclins, Cdk, P53, NF-κB, Bax/Bcl-2 ratio, caspases, COX-2, P38, AR antagonist</td>
<td>Camellia sinensis (Theaceae)</td>
<td>[54–62]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Apoptosis</td>
<td>PS3, NF-κB, Bax/Bcl-2 ratio, caspases, COX-2, P38, AR antagonist</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRAMP mice</td>
<td>i Invasion-metastasis</td>
<td>VEGF, MMPs, uPA, angiopoietins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisetin (flavonoid)</td>
<td>PC-3, LNCaP</td>
<td></td>
<td>Apoptosis</td>
<td>i IGF-1, MAPK</td>
<td>Acacia greggii (Fabaceae)</td>
<td>[63–67]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CWR22 Rupsilon1 human xenograft</td>
<td></td>
<td>i Tumor growth</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
<table>
<thead>
<tr>
<th>Compound</th>
<th><strong>In vitro</strong></th>
<th><strong>In vivo</strong></th>
<th><strong>Mechanism</strong></th>
<th><strong>Molecular pathway</strong></th>
<th><strong>Plant</strong></th>
<th><strong>References</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Formononetin (isoflavone)</td>
<td>PC-3, LNCaP</td>
<td>DU145</td>
<td>Apoptosis</td>
<td>ERK1/2, MAPK, Bax, IGF, Bax/Bcl-2 ratio, p38/Akt, T-RASD1</td>
<td><em>Trifolium pretense</em> (Fabaceae)</td>
<td>[68–71]</td>
</tr>
<tr>
<td>Gallic acid (polyphenol)</td>
<td>DU145</td>
<td>LNCaP, PC-3</td>
<td>G2/M cycle arrest</td>
<td>ATM-Chk2, ROS, caspases, 3, 9 P3K/AKT, NF-xB, MMP-2</td>
<td><em>Vitis vinifera</em> (Vitaceae)</td>
<td>[72–76]</td>
</tr>
<tr>
<td>Gambogic acid (xanthone)</td>
<td>PC-3</td>
<td>Xenografts</td>
<td>Apoptosis, no invasion</td>
<td>NF-xB, P3K/Akt</td>
<td><em>Carcinia hanburyi</em> (Clusiaceae)</td>
<td>[77–79]</td>
</tr>
<tr>
<td>Genistein (flavanone)</td>
<td>DU145, PC-3, ND1, LNCaP, ALVA31, JCA1</td>
<td>PC-3, DU145 xenografts, Lobund-Wistar rats, TRAMP mice</td>
<td>Cycle arrest, growth inhibition</td>
<td>p21WAF1, p-Cdks, cyclins, survivin, DNA topoisomerase II, i-IGF-1/IGF-1R, IL-10, MMP-9, protease M, uPAR, VEGF</td>
<td>Glycine max (Fabaceae)</td>
<td>[80–97]</td>
</tr>
<tr>
<td>Ginkgolide B</td>
<td>PC-3, LNCaP</td>
<td></td>
<td>Apoptosis</td>
<td>Caspase-3</td>
<td><em>Panax sp.</em> (Araliaceae)</td>
<td>[98–101]</td>
</tr>
<tr>
<td>Ginkgolide C</td>
<td>PC-3, LNCaP</td>
<td></td>
<td>Apoptosis</td>
<td>Caspase-3</td>
<td><em>Panax sp.</em> (Araliaceae)</td>
<td>[102–104]</td>
</tr>
</tbody>
</table>

*Note: This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.*
<table>
<thead>
<tr>
<th>Compound</th>
<th>In vitro</th>
<th>In vivo</th>
<th>Molecular pathway</th>
<th>Plant</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-OH‑PPD</td>
<td>p21, p27, Bax</td>
<td>PC-3, LNCaP xenografts</td>
<td>G1 cycle arrest</td>
<td>Panax sp. (Araliaceae)</td>
<td>[105, 106]</td>
</tr>
<tr>
<td>25-OCH3‑PPD</td>
<td>Apoptosis, no invasion</td>
<td>G1 cycle arrest</td>
<td>Cell proliferation</td>
<td>Chrysanthemum tuberosum (Chrysanthaceae)</td>
<td>[113, 114]</td>
</tr>
<tr>
<td>Glycerrhitinic acid (triterpenoid)</td>
<td>Apoptosis, no invasion</td>
<td>DU145, LNCaP</td>
<td>Apoptosis, no invasion</td>
<td>G. glabra (Fabaceae)</td>
<td>[113, 114]</td>
</tr>
<tr>
<td>Isoangustone A (flavonoid)</td>
<td>Apoptosis</td>
<td>G. uralensis (Fabaceae)</td>
<td>Apoptosis</td>
<td>Apoptosis, no invasion</td>
<td>[107–109]</td>
</tr>
<tr>
<td>Licochalcone (flavonoid)</td>
<td>Apoptosis, autophagy</td>
<td>PC-3, LNCaP</td>
<td>G2/M cycle arrest</td>
<td>G. glabra (Fabaceae)</td>
<td>[110–112]</td>
</tr>
<tr>
<td>Gossypol (polyphenolic aldehyde)</td>
<td>Apoptosis, no invasion</td>
<td>PC-3, BPH</td>
<td>Apoptosis, no invasion</td>
<td>G. hirsutum (Malvaceae)</td>
<td>[115–123]</td>
</tr>
<tr>
<td>Honokiol (lignan)</td>
<td>Apoptosis</td>
<td>C4-2</td>
<td>Apoptosis</td>
<td>Magnolia officinalis (Magnoliaceae)</td>
<td>[140–142]</td>
</tr>
<tr>
<td>Luteolin (flavonoid)</td>
<td>Apoptosis</td>
<td>PC-3, LNCaP</td>
<td>Apoptosis</td>
<td>Terminalia chebula (Combretaceae)</td>
<td>[124–128]</td>
</tr>
</tbody>
</table>

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
<table>
<thead>
<tr>
<th>Compound</th>
<th>In vitro</th>
<th>In vivo</th>
<th>Mechanism</th>
<th>Molecular pathway</th>
<th>Plant</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lycopene (carotenoid)</td>
<td>LNCaP, PC-3</td>
<td>DU145, PC-3</td>
<td>Cell cycle arrest, Apoptosis</td>
<td>Cdk4, cyclins D1, E and Rb, PPARY-LXRXα-ABCA1</td>
<td>Solanum lycopersicum (Solanaceae)</td>
<td>[129–139]</td>
</tr>
<tr>
<td>Magnolol (biphenyl)</td>
<td>PC-3</td>
<td>Apoptosis, no invasion</td>
<td>EGFR</td>
<td>Magnolia officinalis (Magnoliaceae)</td>
<td>[143]</td>
<td></td>
</tr>
<tr>
<td>Obovatol (biphenyl)</td>
<td>LNCaP, PC-3</td>
<td>Apoptosis</td>
<td>NF-κB</td>
<td>Magnolia obovata (Magnoliaceae)</td>
<td>[144, 145]</td>
<td></td>
</tr>
<tr>
<td>Oridonin (isoprenoid)</td>
<td>LNCaP, PC-3</td>
<td>G2/M cycle arrest, Apoptosis, autophagy</td>
<td>p21</td>
<td>Rabdosia rubescens (Labiatae)</td>
<td>[146–148]</td>
<td></td>
</tr>
<tr>
<td>PEITC (isothiocyanate)</td>
<td>DU145, C4-2B, LNCaP, PC-3</td>
<td>G2/M cycle arrest, Apoptosis, Autophagy</td>
<td>JAK/STAT-3, p53, p21, Akt, VEGF, Notch, Autophagy E-cadherin</td>
<td>Brassica oleracea (Brassicaceae)</td>
<td>[149–160]</td>
<td></td>
</tr>
<tr>
<td>Quercetin (polyphenol)</td>
<td>LNCaP, DU145, PC-3</td>
<td>Cell cycle arrest, Apoptosis</td>
<td>Cyclins, Cdk5, Rb, ErbB 3, Bcl, caspases, IGF, fatty acid synthase, HSP90, IαR</td>
<td>Vitis sp. (Vitaceae)</td>
<td>[161–166]</td>
<td></td>
</tr>
<tr>
<td>Sanguinarine (alkaloid)</td>
<td>LNCaP, DU145, PC-3, C4-2B</td>
<td>G0–G1 cycle arrest, Apoptosis, No invasion, metastasis</td>
<td>p21/Waf1, p27/Kip1, Cdk5, Survivin</td>
<td>Sanguinaria canadensis (Papaveraceae)</td>
<td>[167–170]</td>
<td></td>
</tr>
</tbody>
</table>

*Table 1 Continued*
<table>
<thead>
<tr>
<th>Compound</th>
<th>In vitro</th>
<th>In vivo</th>
<th>Mechanism</th>
<th>Molecular pathway</th>
<th>Plant</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silibinin (flavolignan)</td>
<td>LNCaP</td>
<td>DU145, 22Rv1</td>
<td>G1 cycle arrest</td>
<td>Rb, Cdns, PDEF, ↓ PSA</td>
<td><em>Silybum marianum</em> (Asteraceae)</td>
<td>[171–184]</td>
</tr>
<tr>
<td></td>
<td>PC-3</td>
<td>PC-3M2, C4-2B</td>
<td>G1, G2/M cycle arrest</td>
<td>P21, p27, Wnt/LRp6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No invasion, metastasis</td>
<td>HIF1, Wnt/LRp6, cyclins, Cdns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NF-κB, vimentin, MMP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>↓ Tumor growth, apoptosis, angiogenesis</td>
<td>1 IGFBP-3, Cip1/p21, Kip1/p27, ↓ Bcl2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulforaphane (isothiocyanate)</td>
<td>LNCaP, PC-3</td>
<td>DU145</td>
<td>G1 cycle arrest</td>
<td>Methyltransferase, cyclins</td>
<td><em>Brassica oleracea</em> (Brassicaceae)</td>
<td>[185–192]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G2/M cycle arrest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Apoptosis</td>
<td>ROS, caspases, HDAC6, ↓ AR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>↓ Angiogenesis</td>
<td>HIF-1, VEGF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No migration</td>
<td>Notch</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>↓ Tumor growth</td>
<td>HDAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PC3 xenografts, TRAMP</td>
<td>↓ Angiogenesis</td>
<td>VEGF, vimentin, MMPs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thymoquinone</td>
<td>LNCaP, C4-2B</td>
<td>LNCaP, C4-2B</td>
<td>↓ Growth</td>
<td>E2F-1, AR, AKT</td>
<td><em>Nigella sativa</em> (Ranunculaceae)</td>
<td>[193–196]</td>
</tr>
<tr>
<td></td>
<td>PC-3, DU145</td>
<td>PC3, DU145 Xenografts</td>
<td>Apoptosis</td>
<td>ROS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>↓ Angiogenesis</td>
<td>VEGF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ursolic acid (triterpenoid)</td>
<td>PC-3, LNCaP</td>
<td>DU145</td>
<td>Apoptosis</td>
<td>JNK, caspases</td>
<td><em>Corni fructus</em> (Cornaceae)</td>
<td>[197–202]</td>
</tr>
<tr>
<td></td>
<td>DU145</td>
<td>TRAMP mice</td>
<td>↓ Angiogenesis</td>
<td>NF-κB, STAT3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No metastasis</td>
<td>CXCR4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ducted in order to clarify whether these compounds can exert their effects in physiologic concentrations or have a combinational effect when administered with the traditional chemotherapeutic agents in order to determine if they are possible candidates for clinical trials.

Conflict of Interest

The authors declare that no conflict of interest or any financial disclosure exists.

References

1 Harvey AL, Cree IA. High-throughput screening of natural products for cancer therapy. Planta Med 2010; 76: 1080–1086
5 Sak K. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn Rev 2014; 8: 122–146
13 Shukla S, Gupta S. Molecular targets for apigenin-induced cell cycle arrest and apoptosis in prostate cancer cell xenograft. Mol Cancer Ther 2006; 5: 843–852
24 Petlichnaia LI. [Chemistry of the alkaloid berberine and its derivatives]. Farm Zh 1975; 30: 22–28
25 Mantena SK, Sharma SD, Katiyar SK. Berberine, a natural product, induces G1-phase cell cycle arrest and caspase 3-dependent apoptosis in human prostate carcinoma cells. Mol Cancer Ther 2006; 5: 296–308
37 Durai T, Gehani N, Katz A. Therapeutic potential of curcumin in human prostate cancer. II. Curcumin inhibits tyrosine kinase activity of epidermal growth factor receptor and depletes the protein. Mol Urol 2000; 4: 1–6
45 Lobow RS, Layne DS. The formation of glucosides of isoflavones and of some other phenols by rabbit liver microsomal fractions. Biochem J 1972; 128: 491–497
55 Zhang X, Bi L, Ye Y, Chen J. Formononetin induces apoptosis in PC-3 prostate cancer cells through enhancing the Bax/Bcl-2 ratios and regulating the p38 and JNK pathways. Nutr Cancer 2014; 66: 565–566
65 Walter ED. Genistin and its aglucone, genistein, from soybeans. JACS 1941; 63: 3273–3276

Gioti K, Tenta R. Bioactive Natural Products... Planta Med 2015; 81: 543–562


Hawthorne S, Gallagher S. Effects of glycyrrhetinic acid and liquorice extract on cell proliferation and prostate-specific antigen secretion in LNCaP prostate cancer cells. J Pharm Pharmacol 2004; 56: 861–866


This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
124 Haag-Berruvier M, Duquenois P. [Extraction and physicochemical characterization of the luteolin in the flowers of the hawkweed Hieracium pilosella L]. C R Hebvd Seances Acad Sci 1962; 254: 3419–3421
144 Sakao K, Desimini S, Hahn ER, Singh SV. Phenoethil isothiocyanate suppresses inhibitor of apoptosis family protein expression in prostate cancer cells in culture and in vivo. Prostate 2012; 72: 1104–1116
146 Kim SH, Sehrawat A, Sakao K, Hahn ER, Singh SV. Notch activation by phenoethil isothiocyanate attenuates its inhibitory effect on prostate cancer cell migration. PLoS One 2011; 6: e26615
152 Huan H, Gong A, Young CY. Involvement of transcription factor Sp1 in quercetin-mediated inhibitory effect on the androgen receptor in human prostate cancer cells. Carcinogenesis 2005; 26: 793–801
153 Huyhn H, Nguyen TT, Chan E, Tran E. Inhibition of ErbB-2 and ErbB-3 expression by quercetin prevents transforming growth factor alpha (TGF-alpha)- and epidermal growth factor (EGF)-induced human PC-3 prostate cancer cell proliferation. Int J Oncol 2003; 23: 821–829

Reviews

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.


Rowe EJ, Orr JE, Uti AH, Parks LM. Inhibition of oleanolic acid and ursolic acid from Thymus vulgaris, L. J Am Pharm Assoc Am Pharm Assoc 1949; 38: 122–124


