Protective Effect of Tetrahydrocurcumin against Cisplatin-Induced Renal Damage: In Vitro and In Vivo Studies

Kyung Il Song*, Jun Yeon Park*, Seungyong Lee1,4, Dahae Lee2,4, Hyuk-jai Jang5, Su-Nam Kim3, Hyeonseok Ko6, Hyun Young Kim4, Jae Woook Lee3, Gwi Seo Hwang2, Ki Sung Kang2, Noriko Yamabe2

Abstract

The adverse effects of anticancer drugs can prompt patients to end their treatment despite the efficacy. Cisplatin is a platinum-based molecule widely used to treat various forms of cancer, but frequent and long-term use of cisplatin is limited due to severe nephrotoxicity. In the present study, we investigated the protective effect and mechanism of tetrahydrocurcumin on cisplatin-induced kidney damage, oxidative stress, and inflammation to evaluate its possible use in renal damage. Cisplatin-induced LLC-PK1 renal cell damage was significantly reduced by tetrahydrocurcumin treatment. Additionally, the protective effect of tetrahydrocurcumin on cisplatin-induced oxidative renal damage was investigated in rats. Tetrahydrocurcumin was orally administered every day at a dose of 80 mg/kg body weight for ten days, and a single dose of cisplatin was administered intraperitoneally (7.5 mg/kg body weight) in 0.9% saline on day four. The creatinine clearance levels, which were markers of renal dysfunction, in cisplatin-treated rats were recovered nearly back to normal levels after administration of tetrahydrocurcumin. Moreover, tetrahydrocurcumin exhibited protective effects against cisplatin-induced oxidative renal damage in rats by inhibiting cyclooxygenase-2 and caspase-3 activation. These results collectively provide therapeutic evidence that tetrahydrocurcumin ameliorates renal damage by regulating inflammation and apoptosis.

Introduction

The usual treatments for cancer are surgery, chemotherapy, radiation, or a combination of these methods [1,2]. Chemotherapy is the use of anticancer drugs to treat cancerous cells. It has been used for many years, and is one of the most common treatments for cancer [3,4]. Anticancer drugs interfere with the growth of tumor cells, eventually causing their death. However, they may also affect the growth of normal cells, causing many adverse effects, some of which may be serious [5]. Cisplatin is a platinum-based anticancer drug widely used to treat various forms of cancer in humans [6,7]. However, this treatment has some major limitations for use. Within an hour following injection, some patients suffer from side effects that include perception and hearing disorders, tinnitus, and inner ear dysfunctions that cause dizziness [8,9]. In addition, frequent and long-term use of cisplatin is restricted because of severe nephrotoxicity [10,11]. These side effects can prompt patients to stop treatment despite its efficacy. Therefore, a better understanding of these side effects is crucial for the continued clinical use of cisplatin.

We have investigated naturally occurring antioxidants that can protect the kidney from cisplatin-induced damage [12–14]. Many researchers have shown the involvement of oxidative stress in cisplatin-induced nephrotoxicity [15,16]. Cisplatin induces the generation of various reactive oxygen species (ROS) by inactivating the cellular antioxidant system, disrupting the mitochondrial respiratory chain, or interacting with microsomal cytochrome P450 [17,18]. Natural antioxidants provide beneficial effects against cisplatin chemotherapy, not only by protecting the kidney from cisplatin-induced oxidative damages, but also by inducing cancer cell death. For example, we have reported that antioxidants from Panax ginseng exhibited both renoprotective and anticancer ef-
Effects, providing evidence for its use as a chemotherapeutic adjuvant [19, 20].

Curcumin is an active ingredient from the plant *Curcuma longa* L. (Zingiberaceae), which has various pharmacological effects, including anti-inflammatory, antioxidant, and anticarcinogenic activities [21–23]. Tetrahydrocurcumin (THC) is an active metabolite of curcumin found in the gastrointestinal tract and a reduced analog of curcumin with phenolic and β-diketo moieties (Fig. 1 A). THC possesses stronger antioxidant activity than other curcuminoids, including curcumin, demethoxycurcumin, and bisdemethoxycurcumin [24,25]. However, little is known about the effects of THC on cisplatin-induced nephrotoxicity. Therefore, the *in vitro* and *in vivo* effects and molecular mechanisms of THC on cisplatin-induced nephrotoxicity were investigated in this study.

Results and Discussion

Recent literature indicates that ROS play critical roles in the development and progression of kidney damage [26–29]. Antioxidant treatment can prevent oxidative damage and might delay the progression of kidney disease. Therefore, the use of antioxidant agents as inhibitors against oxidative stress may be considered an important therapeutic approach for kidney disease. In the present study, we have investigated the protective effects and mechanism of THC on cisplatin-induced kidney damage, oxidative stress, and inflammation to evaluate its possible use in renal damage.

The protective effect of THC against cisplatin-induced oxidative damage was tested using LLC-PK1 cells, which are renal tubular cells that are the most vulnerable renal tissue to oxidative stress [26]. Fig. 1 B shows the morphological changes of cisplatin-treated LLC-PK1 cells that were also treated with THC. As shown in Fig. 1 C, 25 µM cisplatin treatment significantly decreased cell viability to about 50% of that of untreated control cells. In contrast, pretreatment with THC markedly restored cell viability in a dose-dependent manner. However, THC demonstrated no cytotoxic effects at the same doses, which was effectively protected from cisplatin-induced cell damage (Fig. 1 D). Then, we further examined the effect of THC on cisplatin-induced oxidative renal damage in rats.

The body weight gains of rats after cisplatin and cisplatin + THC treatments were markedly reduced compared to normal rats.

Fig. 1 Effect of tetrahydrocurcumin on cisplatin-induced nephrotoxicity in LLC-PK1 cells. A Chemical structure of THC. B Representative microscopic images showing the protective effect of THC against cisplatin-induced nephrotoxicity in cells. C Dose-dependent protective effect of THC against cisplatin-induced nephrotoxicity in cells. D No cytotoxic effects of THC at the same doses, which was effectively protected from cisplatin-induced cell damage. P < 0.05 compared to the cisplatin-treated control value. (Color figure available online only.)
Similarly, food intake amounts were slightly lowered after cisplatin treatments and gradually recovered in the vehicle-treated groups (Fig. 2B). The sharp decrease in the food intake was observed on day four in cisplatin and cisplatin + THC treated groups. These results are in accordance with earlier reports that noted a decrease in body weight gain after cisplatin injection [30]. Cisplatin intoxication resulted in a significant body weight reduction and kidney weight increase. However, these changes were not significantly ameliorated by THC treatment (Fig. 2C). Regarding renal functional parameters, cisplatin-injected rats exhibited decreased creatinine clearance levels compared to those of the vehicle-treated group. The reduced creatinine clearance level of cisplatin-treated rats was significantly recovered by co-treatment with THC (Fig. 2D).

Fig. 3A shows the effect of THC on organic cation transporter-2, cyclooxygenase-2, and procaspase-3 protein expression in cisplatin-treated rat kidneys. OCT-2 is a renal uptake transporter that plays a key role in disposition and the renal clearance of drugs and endogenous compounds [31]. OCT-2 protein expression in kidney tissue was slightly increased after cisplatin treatment and was decreased by THC treatment, but the differences were not statistically significant (Fig. 3B). COX-2 is an inducible component of the prostaglandin synthesis cascade and is inducible in normal cells by many cytokines, mitogens, and proinflammatory factors [32]. Recent studies have demonstrated that COX-2 is highly expressed in response to inflammation in kidney tissue. Therefore, it may be intimately involved in prostaglandin-dependent renal inflammatory processes [33]. Thus, the development of COX-2 inhibitors serves as a paradigm for molecularly targeted renoprotective agents. Caspase-3 is potentially the most important effector enzyme in apoptosis, providing a common pathway to both death receptor- and mitochondria-dependent apoptotic mechanisms [34, 35]. COX-2 and procaspase-3 protein expression levels were significantly increased after cisplatin-injection, but cisplatin co-treatment with THC resulted in almost complete renoprotection. These results imply that THC may alleviate oxidative stress by preventing caspase-3 activation and related inflammation in the kidney.

PAS staining was performed on renal sections to measure tubular damage. As shown in the representative pictures of renal sections, severe tubulointerstitial injuries, including tubular epithelial cell detachments, cystic dilatation of tubules, and inflammatory cell infiltration, occurred in the kidneys of cisplatin-treated animals (Fig. 4). However, the increased tubular damage in cisplatin-treated rats was reduced by co-treatments with THC (Fig. 4). Therefore, THC was effective in alleviating cisplatin-induced tubulointerstitial injuries.

In summary, kidney cell damage induced by cisplatin was significantly inhibited by treatment with THC. In addition, the renal dysfunction of cisplatin-treated rats was markedly ameliorated by THC extract administration. The renoprotective effect of THC was associated with the caspase-dependent anti-inflammatory pathway. Taken together, these results demonstrate that THC exerted a renoprotective effect in cisplatin-treated rats and, therefore, its use can be considered to prevent kidney damage during or after chemotherapy.
Fig. 3 Effect of tetrahydrocurcumin on protein expression levels of organic cation transporter-2, cyclooxygenase-2, and procaspase-3 of the rat kidney. A OCT-2 (60 kDa), COX-2 (72 kDa), and cleaved caspase-3 (17, 19 kDa) protein expressions evaluated by Western blot analysis. GAPDH (37 kDa) was used as an internal control. B Quantitative data for the OCT-2, COX-2, and cleaved caspase-3 Western blot analysis. Western blot assays were done in triplicate for each protein and were repeated at least three times. *P < 0.05 compared to the cisplatin-treated control value.

Fig. 4 Effect of THC on the cisplatin-induced tubular damage in renal cortex tissues. A PAS staining of a representative renal section. B Quantitative data for the tubular damage of PAS staining. Original magnification of A is × 100. *P < 0.05 compared to the cisplatin-treated control value. (Color figure available online only.)
Materials and Methods

Chemicals and reagents
THC and cisplatin (purity 98–100%) were purchased from Sigma. A stock solution of chemicals for cell-based assays was prepared in 100% DMSO and stored at −20°C until use. When required, the stock solution was diluted with cell culture media to the appropriate concentration. The final concentrations of DMSO in the culture media were adjusted to less than 0.5% (v/v), which exhibits no toxic effect for cells. Dulbecco’s modified Eagle’s medium (DMEM) was purchased from Cellgro and FBS was from Invitrogen. OCT-2, COX-2, cleaved caspase-3, GAPDH, and horseradish peroxidase (HRP) conjugated anti-rabbit antibodies were purchased from Cell Signaling and EZ-Cytox reagent was from Daeil Lab Service.

Renoprotective effect against cisplatin-induced damage in kidney cells
The renoprotective effect against oxidative renal damage was evaluated using LLC-PK1 cells [26]. LLC-PK1 (pig kidney epithelial, CL-101) cells were purchased from ATCC and cultured in DMEM supplemented with 10% FBS, 1% penicillin/streptomycin, and 4 mM L-glutamine at 37°C with 5% CO2 in the air. The cells were seeded in 96-well culture plates at 1 × 104 cells per well and allowed to adhere for 2 h. Thereafter, the test sample and/or radical donor were removed. The cells were incubated with serum free medium (90 µL/well) and Ez-Cytox reagent (10 µL/well) at 37°C for 2 h. Cell viability was measured by absorbance at 450 nm using a microplate reader.

Renoprotective effect against cisplatin-induced oxidative damage in rats
All procedures involving the use of live animals as described in this study were approved in May 2014 by the Institutional Animal Care and Use Committee of the Gachon University (approval number GACUC-R2014002) and strictly followed the NIH guidelines for the humane treatment of animals. Male Wistar rats weighing 140–160 g were used for evaluating the protection of THC against cisplatin-induced nephrotoxicity. The rats were housed with a temperature of 23 ± 2°C and 55 ± 5% humidity [conditions with a standard light (12 h light/dark)]. The rats were given a free access to water and a normal diet containing 10 kcal% fat for a period of one week after their arrival and were then divided into four groups based on their body weight and assigned to the vehicle, THC, cisplatin, or cisplatin + THC.

Group 1: vehicle (n = 4), received water (no sample treatment);

Group 2: THC (n = 4), treated with THC (80 mg/kg) in aqueous solution orally for ten days; group 3: cisplatin (n = 4) received water (no sample treatment); group 4: cisplatin + THC (n = 4), treated with THC (80 mg/kg) in aqueous solution orally for ten days. THC was orally administered every day at a dose of 80 mg/kg body weight, while vehicle-treated rats were orally given water. The 80 mg/kg of THC dosage was chosen according to the literature [25]. After four days, rats in two groups (cisplatin and cisplatin + THC) were administered a single dose of cisplatin intraperitoneally (7.5 mg/kg body weight) in 0.9% saline. Animals in the vehicle group received an equivalent amount of normal saline for ten days. The rats were sacrificed six days after cisplatin administration under light ether anesthesia. Twenty-four hour urine samples were collected using a metabolic cage. Blood samples were collected from the abdominal aorta, and the kidneys were removed. All the preparations and analyses of various parameters were performed simultaneously under similar experimental conditions to avoid any day-to-day variations. During the experimental period, their body weights were measured daily.

Plasma biomarker analyses
Blood samples were collected in tubes containing 0.18 M EDTA and centrifuged at 5000 rpm for 5 min at 4°C. After centrifugation, the plasma was separated for the estimation of creatinine. Creatinine levels were determined by a rate-blanked kinetic Jaffe method. Creatinine clearance was calculated on the basis of the urinary Cr, serum Cr, urine volume, and body weight using the following equation:

Creatinine clearance (mL/min/g body weight) = [urinary Cr (mg/dl) × urine volume (mL)/serum Cr (mg/dl)] × [1000/body weight (g)] × [1/1440 (min)]

Histological analysis of kidney
Kidney samples were fixed in 10% buffered formalin phosphate, dehydrated, embedded in paraffin, sectioned in 3 µm thickness, and stained with periodic acid–Schiff (PAS) reagent (Fisher Scientific) for histological examination. Tubular damage in PAS-stained sections was examined under a microscope and scored based on the percentage of cortical tubules showing epithelial necrosis: 0, normal; 1, 1–25%; 2, 26–50%; 3, 51–75%; 4, > 76%. Tubular necrosis was defined as the loss of the proximal tubular brush border, blebbing of apical membranes, tubular epithelial cell detachment from the basement membrane, or intraluminal aggregation of cells and proteins, as described previously [36].

Preparation of whole-cell extracts from tissue
Whole-cell extracts from the kidney tissue were prepared according to the manufacturer’s (Cell Signaling) instructions using RIPA buffer supplemented with a 1× protease inhibitor cocktail and 1 mM phenylmethylsulfonyl fluoride (PMSF, Sigma).

Western blot analysis
Proteins (whole-cell extracts, 30 µg/lane; nuclear extracts, 10 µg/lane; cytosolic extracts, 20 µg/lane) were separated by SDS-PAGE, transferred to polyvinylidene fluoride (PVDF) membranes (Millipore) for 1 h at semi-dry, and blocked in blocking buffer for 1 h at room temperature. The PVDF membranes were incubated with the primary antibody against OCT-2 (1:1000 dilution), COX-2 (1:1000 dilution), cleaved caspase-3 (1:1000 dilution), and GAPDH (1:1000 dilution) overnight at 4°C, washed three times for 5 min in wash buffer, incubated with the HRP-conjugated secondary antibody (1:2000 dilution, anti-rabbit) for 1 h at room temperature, washed three times, and then detected with enhanced chemiluminescence (ECL) solution (GE Healthcare).

Statistical analysis
Statistical significance was determined through one-way analysis of variance (ANOVA) followed by a multiple comparison test with a Bonferroni adjustment. P values less than 0.05 were considered statistically significant.
Acknowledgements

This research was funded by the Gangneung Asan Hospital Biomedical Research Center Promotion Fund and Gachon University Research Fund 2014 (GCU-2014-0116).

Conflict of Interest

The authors declare no conflict of interest.

Affiliations
1 Department of Internal Medicine, University of Ulsan College of Medicine, Gangneung Asan Hospital, Gangneung, Korea
2 College of Korean Medicine, Gachon University, Seongnam, Korea
3 Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung, Korea
4 Department of Food Science, Gyeongnam National University of Science and Technology, Jinju, Korea
5 Department of Surgery, University of Ulsan College of Medicine, Gangneung Asan Hospital, Gangneung, Korea
6 Laboratory of Molecular Oncology, Cheil General Hospital & Women’s Healthcare Center, Kwandong University College of Medicine, Seoul, Korea

References
17 Jueng M, Dong Z. Regulation and pathological role of p53 in cisplatin nephrotoxicity. Pharmacology 2008; 327: 300–307
27 Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 2008; 57: 1446–1454
34 Cohen GM. Caspases: the executioners of apoptosis. Biochem 1997; 326: 1–16