Semin Liver Dis 2015; 35(01): 012-025
DOI: 10.1055/s-0034-1397345
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

MicroRNAs in Fatty Liver Disease

Cyril Sobolewski
1   Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
,
Nicolas Calo
1   Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
,
Dorothea Portius
1   Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
,
Michelangelo Foti
1   Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
› Author Affiliations
Further Information

Publication History

Publication Date:
29 January 2015 (online)

Abstract

Overweight and obesity, insulin resistance and diabetes, chronic alcoholism, as well as infection by specific genotypes of hepatitis C viruses are all associated with an excessive and chronic ectopic accumulation of fat in the liver (steatosis). If the underlining causes of steatosis development are not resolved, progression toward more severe liver diseases such as inflammation, fibrosis, and cirrhosis can then occur with time. These hepatic metabolic and histological disorders are commonly referred to as fatty liver disease (FLD) and result from multiple deregulated molecular mechanisms controlling hepatic homeostasis. Among these mechanisms, deregulation of a whole network of small noncoding RNAs called microRNAs (miRNAs), which regulate gene expression at a posttranscriptional level, critically contributes to the development and progression of FLD. Specific miRNAs secreted in body fluids are also emerging as useful biomarkers of FLD and therapeutic targeting of miRNAs is currently being evaluated. The authors discuss recent findings highlighting the role and complexity of miRNA regulatory networks, which critically contribute to the development of FLD. As well, the potential therapeutic perspectives for FLD that our understanding of hepatic miRNA biology offers is considered.

 
  • References

  • 1 Altamirano J, Bataller R. Alcoholic liver disease: pathogenesis and new targets for therapy. Nat Rev Gastroenterol Hepatol 2011; 8 (9) 491-501
  • 2 Negro F. Hepatitis C virus-induced steatosis: an overview. Dig Dis 2010; 28 (1) 294-299
  • 3 Birkenfeld AL, Shulman GI. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology 2014; 59 (2) 713-723
  • 4 Bhala N, Jouness RI, Bugianesi E. Epidemiology and natural history of patients with NAFLD. Curr Pharm Des 2013; 19 (29) 5169-5176
  • 5 Milić S, Stimac D. Nonalcoholic fatty liver disease/steatohepatitis: epidemiology, pathogenesis, clinical presentation and treatment. Dig Dis 2012; 30 (2) 158-162
  • 6 Starley BQ, Calcagno CJ, Harrison SA. Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology 2010; 51 (5) 1820-1832
  • 7 Samuel VT, Liu ZX, Qu X , et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem 2004; 279 (31) 32345-32353
  • 8 Brown MS, Goldstein JL. Selective versus total insulin resistance: a pathogenic paradox. Cell Metab 2008; 7 (2) 95-96
  • 9 Farese Jr RV, Zechner R, Newgard CB, Walther TC. The problem of establishing relationships between hepatic steatosis and hepatic insulin resistance. Cell Metab 2012; 15 (5) 570-573
  • 10 Tsochatzis EA, Bosch J, Burroughs AK. Liver cirrhosis. Lancet 2014; 383 (9930) 1749-1761
  • 11 Yates LA, Norbury CJ, Gilbert RJ. The long and short of microRNA. Cell 2013; 153 (3) 516-519
  • 12 Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116 (2) 281-297
  • 13 Rayner KJ, Esau CC, Hussain FN , et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 2011; 478 (7369) 404-407
  • 14 Patrick DM, Montgomery RL, Qi X , et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J Clin Invest 2010; 120 (11) 3912-3916
  • 15 Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature 2014; 505 (7483) 344-352
  • 16 Young LE, Moore AE, Sokol L, Meisner-Kober N, Dixon DA. The mRNA stability factor HuR inhibits microRNA-16 targeting of COX-2. Mol Cancer Res 2012; 10 (1) 167-180
  • 17 Horie T, Nishino T, Baba O , et al. MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice. Nat Commun 2013; 4: 2883
  • 18 Ng R, Wu H, Xiao H , et al. Inhibition of microRNA-24 expression in liver prevents hepatic lipid accumulation and hyperlipidemia. Hepatology 2014; 60 (2) 554-564
  • 19 Szabo G, Bala S. MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol 2013; 10 (9) 542-552
  • 20 Shibata C, Kishikawa T, Otsuka M , et al. Inhibition of microRNA122 decreases SREBP1 expression by modulating suppressor of cytokine signaling 3 expression. Biochem Biophys Res Commun 2013; 438 (1) 230-235
  • 21 Iliopoulos D, Drosatos K, Hiyama Y, Goldberg IJ, Zannis VI. MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism. J Lipid Res 2010; 51 (6) 1513-1523
  • 22 Esau C, Davis S, Murray SF , et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006; 3 (2) 87-98
  • 23 Nie YQ, Cao J, Zhou YJ , et al. The effect of miRNA-122 in regulating fat deposition in a cell line model. J Cell Biochem 2014; 115 (5) 839-846
  • 24 Li S, Chen X, Zhang H , et al. Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. J Lipid Res 2009; 50 (9) 1756-1765
  • 25 Alisi A, Masotti A, Nobili V. Profiling microRNA expression: a snapshot of nonalcoholic steatohepatitis and a recording of its pathogenesis. Hepatology 2009; 49 (2) 706-707
  • 26 Trebicka J, Anadol E, Elfimova N , et al. Hepatic and serum levels of miR-122 after chronic HCV-induced fibrosis. J Hepatol 2013; 58 (2) 234-239
  • 27 Dippold RP, Vadigepalli R, Gonye GE, Patra B, Hoek JB. Chronic ethanol feeding alters miRNA expression dynamics during liver regeneration. Alcohol Clin Exp Res 2013; 37 (Suppl. 01) E59-E69
  • 28 Tsai WC, Hsu SD, Hsu CS , et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest 2012; 122 (8) 2884-2897
  • 29 Hsu SH, Wang B, Kota J , et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest 2012; 122 (8) 2871-2883
  • 30 Bhatia H, Verma G, Datta M. miR-107 orchestrates ER stress induction and lipid accumulation by post-transcriptional regulation of fatty acid synthase in hepatocytes. Biochim Biophys Acta 2014; 1839 (4) 334-343
  • 31 Xiao F, Yu J, Liu B , et al. A novel function of microRNA 130a-3p in hepatic insulin sensitivity and liver steatosis. Diabetes 2014; 63 (8) 2631-2642
  • 32 Geyeregger R, Zeyda M, Stulnig TM. Liver X receptors in cardiovascular and metabolic disease. Cell Mol Life Sci 2006; 63 (5) 524-539
  • 33 Higuchi N, Kato M, Shundo Y , et al. Liver X receptor in cooperation with SREBP-1c is a major lipid synthesis regulator in nonalcoholic fatty liver disease. Hepatol Res 2008; 38 (11) 1122-1129
  • 34 Zhong D, Zhang Y, Zeng YJ , et al. MicroRNA-613 represses lipogenesis in HepG2 cells by downregulating LXRα. Lipids Health Dis 2013; 12: 32
  • 35 Zhong D, Huang G, Zhang Y , et al. MicroRNA-1 and microRNA-206 suppress LXRα-induced lipogenesis in hepatocytes. Cell Signal 2013; 25 (6) 1429-1437
  • 36 Adlakha YK, Khanna S, Singh R, Singh VP, Agrawal A, Saini N. Pro-apoptotic miRNA-128-2 modulates ABCA1, ABCG1 and RXRα expression and cholesterol homeostasis. Cell Death Dis 2013; 4: e780
  • 37 Miller AM, Gilchrist DS, Nijjar J , et al. MiR-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice. PLoS ONE 2013; 8 (8) e72324
  • 38 Shirasaki T, Honda M, Shimakami T , et al. MicroRNA-27a regulates lipid metabolism and inhibits hepatitis C virus replication in human hepatoma cells. J Virol 2013; 87 (9) 5270-5286
  • 39 Peyrou M, Ramadori P, Bourgoin L, Foti M. PPARs in Liver Diseases and Cancer: Epigenetic Regulation by MicroRNAs. PPAR Res 2012; 2012: 757803
  • 40 Schadinger SE, Bucher NL, Schreiber BM, Farmer SR. PPARgamma2 regulates lipogenesis and lipid accumulation in steatotic hepatocytes. Am J Physiol Endocrinol Metab 2005; 288 (6) E1195-E1205
  • 41 Li X. SIRT1 and energy metabolism. Acta Biochim Biophys Sin (Shanghai) 2013; 45 (1) 51-60
  • 42 Zhou B, Li C, Qi W , et al. Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity. Diabetologia 2012; 55 (7) 2032-2043
  • 43 Lee J, Padhye A, Sharma A , et al. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J Biol Chem 2010; 285 (17) 12604-12611
  • 44 Yin H, Hu M, Zhang R, Shen Z, Flatow L, You M. MicroRNA-217 promotes ethanol-induced fat accumulation in hepatocytes by down-regulating SIRT1. J Biol Chem 2012; 287 (13) 9817-9826
  • 45 Dávalos A, Goedeke L, Smibert P , et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A 2011; 108 (22) 9232-9237
  • 46 Zhang Y, Cheng X, Lu Z , et al. Upregulation of miR-15b in NAFLD models and in the serum of patients with fatty liver disease. Diabetes Res Clin Pract 2013; 99 (3) 327-334
  • 47 Koo SH. Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis. Clin Mol Hepatol 2013; 19 (3) 210-215
  • 48 Ramirez CM, Dávalos A, Goedeke L , et al. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol 2011; 31 (11) 2707-2714
  • 49 Gerin I, Clerbaux LA, Haumont O , et al. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J Biol Chem 2010; 285 (44) 33652-33661
  • 50 Goedeke L, Vales-Lara FM, Fenstermaker M , et al. A regulatory role for microRNA 33* in controlling lipid metabolism gene expression. Mol Cell Biol 2013; 33 (11) 2339-2352
  • 51 Allen RM, Marquart TJ, Albert CJ , et al. miR-33 controls the expression of biliary transporters, and mediates statin- and diet-induced hepatotoxicity. EMBO Mol Med 2012; 4 (9) 882-895
  • 52 Hoekstra M, van der Sluis RJ, Kuiper J, Van Berkel TJ. Nonalcoholic fatty liver disease is associated with an altered hepatocyte microRNA profile in LDL receptor knockout mice. J Nutr Biochem 2012; 23 (6) 622-628
  • 53 Kang MH, Zhang LH, Wijesekara N , et al. Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by miR-145. Arterioscler Thromb Vasc Biol 2013; 33 (12) 2724-2732
  • 54 Karagianni P, Talianidis I. Transcription factor networks regulating hepatic fatty acid metabolism. Biochim Biophys Acta 2014; ; (May): 9
  • 55 Singaravelu R, Chen R, Lyn RK , et al. Hepatitis C virus induced up-regulation of microRNA-27: a novel mechanism for hepatic steatosis. Hepatology 2014; 59 (1) 98-108
  • 56 Kida K, Nakajima M, Mohri T , et al. PPARα is regulated by miR-21 and miR-27b in human liver. Pharm Res 2011; 28 (10) 2467-2476
  • 57 Vinciguerra M, Sgroi A, Veyrat-Durebex C, Rubbia-Brandt L, Buhler LH, Foti M. Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes. Hepatology 2009; 49 (4) 1176-1184
  • 58 Zheng L, Lv GC, Sheng J, Yang YD. Effect of miRNA-10b in regulating cellular steatosis level by targeting PPAR-alpha expression, a novel mechanism for the pathogenesis of NAFLD. J Gastroenterol Hepatol 2010; 25 (1) 156-163
  • 59 Baroukh N, Ravier MA, Loder MK , et al. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem 2007; 282 (27) 19575-19588
  • 60 Ahn J, Lee H, Jung CH, Ha T. Lycopene inhibits hepatic steatosis via microRNA-21-induced downregulation of fatty acid-binding protein 7 in mice fed a high-fat diet. Mol Nutr Food Res 2012; 56 (11) 1665-1674
  • 61 Vinciguerra M, Veyrat-Durebex C, Moukil MA, Rubbia-Brandt L, Rohner-Jeanrenaud F, Foti M. PTEN down-regulation by unsaturated fatty acids triggers hepatic steatosis via an NF-kappaBp65/mTOR-dependent mechanism. Gastroenterology 2008; 134 (1) 268-280
  • 62 Berriot-Varoqueaux N, Aggerbeck LP, Samson-Bouma M, Wetterau JR. The role of the microsomal triglygeride transfer protein in abetalipoproteinemia. Annu Rev Nutr 2000; 20: 663-697
  • 63 Tanoli T, Yue P, Yablonskiy D, Schonfeld G. Fatty liver in familial hypobetalipoproteinemia: roles of the APOB defects, intra-abdominal adipose tissue, and insulin sensitivity. J Lipid Res 2004; 45 (5) 941-947
  • 64 Soh J, Iqbal J, Queiroz J, Fernandez-Hernando C, Hussain MM. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat Med 2013; 19 (7) 892-900
  • 65 González-Rodríguez A, Mayoral R, Agra N , et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis 2014; 5: e1179
  • 66 Lin CW, Zhang H, Li M , et al. Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice. J Hepatol 2013; 58 (5) 993-999
  • 67 Vescovo T, Romagnoli A, Perdomo AB , et al. Autophagy protects cells from HCV-induced defects in lipid metabolism. Gastroenterology 2012; 142 (3) 644-653.e3
  • 68 Frankel LB, Lund AH. MicroRNA regulation of autophagy. Carcinogenesis 2012; 33 (11) 2018-2025
  • 69 Seca H, Lima RT, Lopes-Rodrigues V, Guimaraes JE, Almeida GM, Vasconcelos MH. Targeting miR-21 induces autophagy and chemosensitivity of leukemia cells. Curr Drug Targets 2013; 14 (10) 1135-1143
  • 70 Wang J, Yang K, Zhou L , et al. MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb. PLoS Pathog 2013; 9 (10) e1003697
  • 71 Xu Y, An Y, Wang Y , et al. miR-101 inhibits autophagy and enhances cisplatin-induced apoptosis in hepatocellular carcinoma cells. Oncol Rep 2013; 29 (5) 2019-2024
  • 72 Meng F, Glaser SS, Francis H , et al. Epigenetic regulation of miR-34a expression in alcoholic liver injury. Am J Pathol 2012; 181 (3) 804-817
  • 73 Yang J, Chen D, He Y , et al. MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9. Age (Dordr) 2013; 35 (1) 11-22
  • 74 Shao W, Espenshade PJ. Expanding roles for SREBP in metabolism. Cell Metab 2012; 16 (4) 414-419
  • 75 Seo YK, Jeon TI, Chong HK, Biesinger J, Xie X, Osborne TF. Genome-wide localization of SREBP-2 in hepatic chromatin predicts a role in autophagy. Cell Metab 2011; 13 (4) 367-375
  • 76 Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell 2012; 148 (5) 852-871
  • 77 Trajkovski M, Hausser J, Soutschek J , et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011; 474 (7353) 649-653
  • 78 Yamamoto M, Toya Y, Schwencke C, Lisanti MP, Myers Jr MG, Ishikawa Y. Caveolin is an activator of insulin receptor signaling. J Biol Chem 1998; 273 (41) 26962-26968
  • 79 Wang Y, Hu C, Cheng J , et al. MicroRNA-145 suppresses hepatocellular carcinoma by targeting IRS1 and its downstream Akt signaling. Biochem Biophys Res Commun 2014; 446 (4) 1255-1260
  • 80 Wen F, Yang Y, Jin D, Sun J, Yu X, Yang Z. MiRNA-145 is involved in the development of resistin-induced insulin resistance in HepG2 cells. Biochem Biophys Res Commun 2014; 445 (2) 517-523
  • 81 Ryu HS, Park SY, Ma D, Zhang J, Lee W. The induction of microRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes. PLoS ONE 2011; 6 (3) e17343
  • 82 Pandey AK, Verma G, Vig S, Srivastava S, Srivastava AK, Datta M. miR-29a levels are elevated in the db/db mice liver and its overexpression leads to attenuation of insulin action on PEPCK gene expression in HepG2 cells. Mol Cell Endocrinol 2011; 332 (1–2) 125-133
  • 83 Leslie NR, Foti M. Non-genomic loss of PTEN function in cancer: not in my genes. Trends Pharmacol Sci 2011; 32 (3) 131-140
  • 84 Jordan SD, Krüger M, Willmes DM , et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 2011; 13 (4) 434-446
  • 85 Weber-Boyvat M, Zhong W, Yan D, Olkkonen VM. Oxysterol-binding proteins: functions in cell regulation beyond lipid metabolism. Biochem Pharmacol 2013; 86 (1) 89-95
  • 86 Olivieri F, Rippo MR, Procopio AD, Fazioli F. Circulating inflamma-miRs in aging and age-related diseases. Front Genet 2013; 4: 121
  • 87 McDaniel K, Herrera L, Zhou T , et al. The functional role of microRNAs in alcoholic liver injury. J Cell Mol Med 2014; 18 (2) 197-207
  • 88 Bala S, Marcos M, Kodys K , et al. Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor alpha (TNFalpha) production via increased mRNA half-life in alcoholic liver disease. J Biol Chem 2011; 286 (2) 1436-1444
  • 89 Jiang M, Broering R, Trippler M , et al. MicroRNA-155 controls Toll-like receptor 3- and hepatitis C virus-induced immune responses in the liver. J Viral Hepat 2014; 21 (2) 99-110
  • 90 Dolganiuc A, Petrasek J, Kodys K , et al. MicroRNA expression profile in Lieber-DeCarli diet-induced alcoholic and methionine choline deficient diet-induced nonalcoholic steatohepatitis models in mice. Alcohol Clin Exp Res 2009; 33 (10) 1704-1710
  • 91 Sarma NJ, Tiriveedhi V, Crippin JS, Chapman WC, Mohanakumar T. Hepatitis C virus-induced changes in microRNA 107 (miRNA-107) and miRNA-449a modulate CCL2 by targeting the interleukin-6 receptor complex in hepatitis. J Virol 2014; 88 (7) 3733-3743
  • 92 Cheung O, Puri P, Eicken C , et al. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology 2008; 48 (6) 1810-1820
  • 93 Wen J, Friedman JR. miR-122 regulates hepatic lipid metabolism and tumor suppression. J Clin Invest 2012; 122 (8) 2773-2776
  • 94 Cazanave SC, Mott JL, Elmi NA , et al. A role for miR-296 in the regulation of lipoapoptosis by targeting PUMA. J Lipid Res 2011; 52 (8) 1517-1525
  • 95 Dooley S, ten Dijke P. TGF-β in progression of liver disease. Cell Tissue Res 2012; 347 (1) 245-256
  • 96 Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008; 134 (6) 1655-1669
  • 97 Miele L, Beale G, Patman G , et al. The Kruppel-like factor 6 genotype is associated with fibrosis in nonalcoholic fatty liver disease. Gastroenterology 2008; 135 (1) 282-291.e1
  • 98 Tu X, Zhang H, Zhang J , et al. MicroRNA-101 suppresses liver fibrosis by targeting the TGFβ signalling pathway. J Pathol 2014; 234 (1) 46-59
  • 99 Lakner AM, Steuerwald NM, Walling TL , et al. Inhibitory effects of microRNA 19b in hepatic stellate cell-mediated fibrogenesis. Hepatology 2012; 56 (1) 300-310
  • 100 Guo CJ, Pan Q, Cheng T, Jiang B, Chen GY, Li DG. Changes in microRNAs associated with hepatic stellate cell activation status identify signaling pathways. FEBS J 2009; 276 (18) 5163-5176
  • 101 He Y, Huang C, Sun X, Long XR, Lv XW, Li J. MicroRNA-146a modulates TGF-beta1-induced hepatic stellate cell proliferation by targeting SMAD4. Cell Signal 2012; 24 (10) 1923-1930
  • 102 Maubach G, Lim MC, Chen J, Yang H, Zhuo L. miRNA studies in in vitro and in vivo activated hepatic stellate cells. World J Gastroenterol 2011; 17 (22) 2748-2773
  • 103 Marquez RT, Bandyopadhyay S, Wendlandt EB , et al. Correlation between microRNA expression levels and clinical parameters associated with chronic hepatitis C viral infection in humans. Lab Invest 2010; 90 (12) 1727-1736
  • 104 Zhang Z, Zha Y, Hu W , et al. The autoregulatory feedback loop of microRNA-21/programmed cell death protein 4/activation protein-1 (MiR-21/PDCD4/AP-1) as a driving force for hepatic fibrosis development. J Biol Chem 2013; 288 (52) 37082-37093
  • 105 Wang T, Zhang L, Shi C , et al. TGF-β-induced miR-21 negatively regulates the antiproliferative activity but has no effect on EMT of TGF-β in HaCaT cells. Int J Biochem Cell Biol 2012; 44 (2) 366-376
  • 106 Dey N, Ghosh-Choudhury N, Kasinath BS, Choudhury GG. TGFβ-stimulated microRNA-21 utilizes PTEN to orchestrate AKT/mTORC1 signaling for mesangial cell hypertrophy and matrix expansion. PLoS ONE 2012; 7 (8) e42316
  • 107 Li ZJ, Ou-Yang PH, Han XP. Profibrotic effect of miR-33a with Akt activation in hepatic stellate cells. Cell Signal 2014; 26 (1) 141-148
  • 108 Iizuka M, Ogawa T, Enomoto M , et al. Induction of microRNA-214-5p in human and rodent liver fibrosis. Fibrogenesis Tissue Repair 2012; 5 (1) 12
  • 109 Wang B, Li W, Guo K, Xiao Y, Wang Y, Fan J. miR-181b promotes hepatic stellate cells proliferation by targeting p27 and is elevated in the serum of cirrhosis patients. Biochem Biophys Res Commun 2012; 421 (1) 4-8
  • 110 Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007; 133 (2) 647-658
  • 111 Takashima M, Parsons CJ, Ikejima K, Watanabe S, White ES, Rippe RA. The tumor suppressor protein PTEN inhibits rat hepatic stellate cell activation. J Gastroenterol 2009; 44 (8) 847-855
  • 112 Thum T, Gross C, Fiedler J , et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008; 456 (7224) 980-984
  • 113 Ji J, Zhang J, Huang G, Qian J, Wang X, Mei S. Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Lett 2009; 583 (4) 759-766
  • 114 Venugopal SK, Jiang J, Kim TH , et al. Liver fibrosis causes downregulation of miRNA-150 and miRNA-194 in hepatic stellate cells, and their overexpression causes decreased stellate cell activation. Am J Physiol Gastrointest Liver Physiol 2010; 298 (1) G101-G106
  • 115 Mann J, Chu DC, Maxwell A , et al. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology 2010; 138 (2) 705-714 , 714.e1–714.e4
  • 116 Chen C, Wu CQ, Zhang ZQ, Yao DK, Zhu L. Loss of expression of miR-335 is implicated in hepatic stellate cell migration and activation. Exp Cell Res 2011; 317 (12) 1714-1725
  • 117 Guo CJ, Pan Q, Jiang B, Chen GY, Li DG. Effects of upregulated expression of microRNA-16 on biological properties of culture-activated hepatic stellate cells. Apoptosis 2009; 14 (11) 1331-1340
  • 118 Murakami Y, Toyoda H, Tanaka M , et al. The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families. PLoS ONE 2011; 6 (1) e16081
  • 119 Roderburg C, Mollnow T, Bongaerts B , et al. Micro-RNA profiling in human serum reveals compartment-specific roles of miR-571 and miR-652 in liver cirrhosis. PLoS ONE 2012; 7 (3) e32999
  • 120 Pogribny IP, Starlard-Davenport A, Tryndyak VP , et al. Difference in expression of hepatic microRNAs miR-29c, miR-34a, miR-155, and miR-200b is associated with strain-specific susceptibility to dietary nonalcoholic steatohepatitis in mice. Lab Invest 2010; 90 (10) 1437-1446
  • 121 Li J, Ghazwani M, Zhang Y , et al. miR-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression. J Hepatol 2013; 58 (3) 522-528
  • 122 Baffy G, Brunt EM, Caldwell SH. Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace. J Hepatol 2012; 56 (6) 1384-1391
  • 123 Farazi TA, Hoell JI, Morozov P, Tuschl T. MicroRNAs in human cancer. Adv Exp Med Biol 2013; 774: 1-20
  • 124 Karakatsanis A, Papaconstantinou I, Gazouli M, Lyberopoulou A, Polymeneas G, Voros D. Expression of microRNAs, miR-21, miR-31, miR-122, miR-145, miR-146a, miR-200c, miR-221, miR-222, and miR-223 in patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma and its prognostic significance. Mol Carcinog 2013; 52 (4) 297-303
  • 125 Cirera-Salinas D, Pauta M, Allen RM , et al. Mir-33 regulates cell proliferation and cell cycle progression. Cell Cycle 2012; 11 (5) 922-933
  • 126 Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 2009; 28 (40) 3526-3536
  • 127 Fujiyoshi M, Ozaki M. Molecular mechanisms of liver regeneration and protection for treatment of liver dysfunction and diseases. J Hepatobiliary Pancreat Sci 2011; 18 (1) 13-22
  • 128 Whittaker S, Marais R, Zhu AX. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene 2010; 29 (36) 4989-5005
  • 129 Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease?. Circ Res 2012; 110 (3) 483-495
  • 130 Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 2006; 20 (9) 1487-1495
  • 131 Yamada H, Suzuki K, Ichino N , et al. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta 2013; 424: 99-103
  • 132 Zhang X, Zhang Z, Dai F , et al. Comparison of circulating, hepatocyte specific messenger RNA and microRNA as biomarkers for chronic hepatitis B and C. PLoS ONE 2014; 9 (3) e92112
  • 133 Wang K, Zhang S, Marzolf B , et al. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci U S A 2009; 106 (11) 4402-4407
  • 134 Miyaaki H, Ichikawa T, Kamo Y , et al. Significance of serum and hepatic microRNA-122 levels in patients with non-alcoholic fatty liver disease. Liver Int 2014; 34 (7) e302-e307
  • 135 Tryndyak VP, Latendresse JR, Montgomery B , et al. Plasma microRNAs are sensitive indicators of inter-strain differences in the severity of liver injury induced in mice by a choline- and folate-deficient diet. Toxicol Appl Pharmacol 2012; 262 (1) 52-59
  • 136 Dubin PH, Yuan H, Devine RK, Hynan LS, Jain MK, Lee WM ; Acute Liver Failure Study Group. Micro-RNA-122 levels in acute liver failure and chronic hepatitis C. J Med Virol 2014; 86 (9) 1507-1514
  • 137 Cermelli S, Ruggieri A, Marrero JA, Ioannou GN, Beretta L. Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS ONE 2011; 6 (8) e23937
  • 138 Chen YP, Jin X, Xiang Z, Chen SH, Li YM. Circulating MicroRNAs as potential biomarkers for alcoholic steatohepatitis. Liver Int 2013; 33 (8) 1257-1265
  • 139 Bala S, Petrasek J, Mundkur S , et al. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology 2012; 56 (5) 1946-1957
  • 140 Ogawa T, Enomoto M, Fujii H , et al. MicroRNA-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis. Gut 2012; 61 (11) 1600-1609
  • 141 Zhang Y, Liu D, Chen X , et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 2010; 39 (1) 133-144
  • 142 Ismail N, Wang Y, Dakhlallah D , et al. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood 2013; 121 (6) 984-995
  • 143 Stenvang J, Petri A, Lindow M, Obad S, Kauppinen S. Inhibition of microRNA function by antimiR oligonucleotides. Silence 2012; 3 (1) 1
  • 144 Wang X, Yu B, Ren W , et al. Enhanced hepatic delivery of siRNA and microRNA using oleic acid based lipid nanoparticle formulations. J Control Release 2013; 172 (3) 690-698
  • 145 Hu J, Xu Y, Hao J, Wang S, Li C, Meng S. MiR-122 in hepatic function and liver diseases. Protein Cell 2012; 3 (5) 364-371
  • 146 Janssen HL, Reesink HW, Lawitz EJ , et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013; 368 (18) 1685-1694
  • 147 Rayner KJ, Suárez Y, Dávalos A , et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 2010; 328 (5985): 1570-1573
  • 148 Sayed D, Rane S, Lypowy J , et al. MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Mol Biol Cell 2008; 19 (8) 3272-3282
  • 149 Szabo G, Sarnow P, Bala S. MicroRNA silencing and the development of novel therapies for liver disease. J Hepatol 2012; 57 (2) 462-466
  • 150 Tillman LG, Geary RS, Hardee GE. Oral delivery of antisense oligonucleotides in man. J Pharm Sci 2008; 97 (1) 225-236
  • 151 Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19 (1) 92-105
  • 152 Choi SE, Fu T, Seok S , et al. Elevated microRNA-34a in obesity reduces NAD+ levels and SIRT1 activity by directly targeting NAMPT. Aging Cell 2013; 12 (6) 1062-1072
  • 153 Derdak Z, Villegas KA, Harb R, Wu AM, Sousa A, Wands JR. Inhibition of p53 attenuates steatosis and liver injury in a mouse model of non-alcoholic fatty liver disease. J Hepatol 2013; 58 (4) 785-791
  • 154 Krutzfeldt J, Rajewsky N, Braich R , et al. Silencing of microRNAs in vivo with “antagomirs”. Nature 2005; 438 (7068) 685-689
  • 155 Chen YJ, Zhu JM, Wu H , et al. Circulating microRNAs as a fingerprint for liver cirrhosis. PloS ONE 2013; 8 (6) e66577