
Abstract
!

We present the application of the generative
topographic map algorithm to visualize the
chemical space populated by natural products
and synthetic drugs. Generative topographic
maps may be used for nonlinear dimensionality
reduction and probabilistic modeling. For com-
pound mapping, we represented the molecules
by two-dimensional pharmacophore features
(chemically advanced template search descrip-
tor). The results obtained suggest a close resem-
blance of synthetic drugs with natural products
in terms of their pharmacophore features, despite
pronounced differences in chemical structure.
Generative topographic map-based cluster analy-
sis revealed both known and new potential activ-
ities of natural products and drug-like com-
pounds. We conclude that the generative topo-
graphic mapmethod is suitable for inferring func-
tional similarities between these two classes of
compounds and predicting macromolecular tar-
gets of natural products.

Abbreviations
!

CATS: chemically advanced template search
COBRA: Collection of Bioactive Reference Ana-

logs
DI: deoxydihydroisoflindissol
DNP: Dictionary of Natural Products
EM: expectation-maximization
GMM: Gaussian mixture model
GPCR: G-protein coupled receptor
GTM: generative topographic map
5-HT: 5-hydroxytryptamine
MACCS: molecular access system
MOE: Molecular Operating Environment
NCE: new chemical entity
PCA: principal component analysis
RBF: radial basis function
RMSE: root mean square error
SOM: self-organizing map
WOMBAT: World of Molecular Bioactivity
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Introduction
!

Natural products have a long-standing history as
a source for innovative compounds in drug dis-
covery [1–3]. A rationale for their success is the
historic evolutionary exploration of chemical
modifications leading to compounds containing
privileged structural motifs with biophoric prop-
erties [4,5]. It has been estimated that for more
than half of the published NCEs for therapeutic
use, natural products served as an inspiration [6],
with a particular emphasis on anticancer agents
[7]. First studies have reported computer-assisted
natural product deorphaning and also presented
* These authors contributed equally to this work.

Miyao T et a
algorithmic advances for automated structure
elucidation [8–11], suggesting that pharmaco-
phore models derived from bioactive natural
products may guide the development of drug-like,
chemically tractable natural product mimetics.
Here, we show how a global perspective on the
pharmacophores found in natural products may
be exploited for drug discovery by visualizing
landscapes of pharmacophoric traits. These give
insightful hints for relating natural products to
synthetic compounds and assessing their poten-
tial polypharmacology. The approach also pro-
vides a means for identifying sparsely populated
biophoric regions of chemical space.
Chemography is an umbrella term describing
computational methods for the visual inspection
of typically two-dimensional representations of
l. Chemography of Natural… Planta Med 2015; 81: 429–435



Fig. 1 Logarithmized posterior probability density on the final generative
topographic map for 3-clerodene-7,15,16,18-tetrol.
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chemical space [12]. Dimensionality reduction is required for
generating these chemical space maps, because most of the com-
puted molecular representations are high-dimensional “descrip-
tors” [13], typically real-numbered vectors, or binary finger-
prints. Various dimension reduction algorithms may be used for
this purpose [14]. Chemographic techniques have been mainly
applied to assess the structural diversity of compound libraries
and the selection of molecular subsets in drug design [15,16].
Both aspects play an important role in the comparison of natural
products to synthetic compound libraries to assess interesting re-
gions in terms of naturally optimized scaffolds and investigate
the quality of compound libraries for chemotype and scaffold di-
versity [17]. Accordingly, maps of natural products and drug-like
compounds have been constructed using properties or structure-
based descriptions with various dimension reduction techniques
[18]. These studies report a pronounced discrepancy of structural
features between man-made compounds and natural products.
For example, Grabowski et al. trained an SOM on physicochemi-
cal properties of natural products and drug-like compounds [19].
They observed clearly separated clusters of drugs and natural
products with little overlap. Lee et al. used the same dimension
reduction technique but on a pharmacophore pattern represen-
tation [20]. These maps were constructed to grasp pharmaco-
phoric traits of small molecules and capture their interaction po-
tential with large biomolecules. Intriguingly, in contrast to the
maps solely based on physicochemical properties, pharmaco-
phore-based chemical space projections indicate a strong mixing
of natural products and synthetic compounds. This observation
suggests that, in spite of their structural differences, the mem-
bers of these two chemical universes are related through their
pharmacophoric features and, therefore, their interaction poten-
tial with macromolecular targets. Consequently, we hypothesize
that chemography could help identify synthetically neglected or
unexplored pharmacophoric patterns of natural products, and at
the same time relate natural products to target-specific regions in
pharmacophore space. In a related study, Oprea and coworkers
compared properties of natural products with synthetic drugs
from WOMBAT [21] by linear PCA [22] and concluded that there
are, in fact, natural product clusters that lack representation in
the set of synthetic drugs. Here, we extend this view on chemical
space by nonlinear pharmacophore mapping.
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Results and Discussion
!

Motivated by the fact that pharmacophore representations allow
for a meaningful mixing of natural products and synthetic drugs
when mapped with the help of SOMs, here we explored GTMs
[23] for their ability to generate meaningful visualizations of
pharmacophoric natural product space [24–26]. GTMs follow a
similar theoretical concept as SOMs and are therefore often con-
sidered a probabilistic extension of the SOM algorithm [27]. Both
methods distinguish themselves from other projection methods
by being nonlinear: They create a manifold in the original data
space (here: chemical space) that is used for the mapping [28].
However, GTMs extend this concept by adding a GMM onto the
manifold, which is assumed to reflect the underlying distribution
of the data. Thereby, the creation of the map is an instance of the
problem of positioning the Gaussian functions appropriately.
There aremethods like the EM algorithm that allow for a fast con-
vergence to local optima, in contrast to heuristic SOM training
which stops after a user-defined number of iterations [29]. The
Miyao T et al. Chemography of Natural… Planta Med 2015; 81: 429–435
GTMʼs probabilistic character allows for projecting a data in-
stance (here: a molecule) not only to one point on the map but
instead calculates the activation for every single Gaussian, so that
we obtain a fuzzy location of every compound on the map
(l" Fig. 1). The quality of the map can be assessed through calcu-
lating the RMSE (Eq. 1) of back-projected data points.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
k yðIi;WÞ � xik2

r
(1)

where N is the number of compounds, li is the position of com-
pound i on the map (also referred to as the latent space), xi is the
descriptor vector of compound i, and y is the back-projection
function from the latent space to the original data space. In sim-
ple terms, Eq. 1 corresponds to the loss of information by projec-
ting from the high-dimensional original data space spanned by
the chemical descriptors to the lower-dimensional latent space.
The number of RBFs, the variance (width) of the basis functions,
the regularization parameters, and the number of latent points
(map size) govern GTM training. The parameters related to the
RBFs control the linearity (smoothness) of the map, and the reg-
ularization parameter helps avoid overfitting. The number of
Gaussian distribution functions in the high-dimensional original
data space gives the number of latent points in the projection.
Each latent point is connected to the mean value of a Gaussian
distribution in the original data space, and the sum of the Gaus-
sian distributions captures the underlying data distribution.
We generated a GTM for a total of 157929 natural products and a
small but carefully curated collection of 12644 drug-like syn-
thetic compounds for which macromolecular targets are anno-
tated (COBRA [30]). The molecules were represented by 210-di-
mensional CATS (version 2) pharmacophore descriptors [31,32].
After GTM training, the RMSE (Eq. 1) for all compounds in both
data collections had a value of 0.99. For the RMSE calculation,



Fig. 2 Mapping error of the GTM projection (RMSE, Eq. 1) with respect to
the number of RBFs used to define the mapʼs resolution. The error bars
present the standard deviations computed from 30 experiments with ran-
domly initialized mapping parameters (W, β). The curve gives the RMSE of
models initialized through PCA analysis of the original data.

Fig. 3 GTM projection of pharmacophore space. The map shows 99.5% of
the training data lacking extreme outliers. A magenta cross marks clusters
that contain natural products (157265 compounds from DNP), red open
squares mark clusters that contain drugs or leads from COBRA (12455
compounds), and orange dots show the location of the projected ChEMBL
library (1351370 compounds). Note that ChEMBL data were not used for
GTM training. Background shading reflects the position of the cluster
centroids according to aromaticity, indicating the average aromaticity of
the clustered compounds. The coloring ranges from white (no compound
aromatic) to black (all compounds aromatic). Upper-case labels (A)–(D)
highlight areas populated by natural products and drugs from both
ChEMBL and COBRA (cf. l" Fig. 5), while lower-case labels (a)–(e) point to
regions of chemical space containing natural products and ChEMBL com-
pounds only (cf. l" Fig. 4). (Color figure available online only.)

431Original Papers

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.
every compound was projected at the posterior mean on the
map. A higher number of RBFs resulted in a better fit to the orig-
inal data, but at the same time increased the complexity of the
model (l" Fig. 2). We decided that 100 RBFs represented an ac-
ceptable compromise to achieve a generalization of the com-
pound distribution while still leading to an appropriate quality
of the mapping. l" Fig. 2 shows that our choice was reasonable in
terms of the change of the RMSE against the number of RBFs.
To identify positions (clusters) on the GTM that are populated
with natural products and drug-like molecules, we projected
each of the compounds onto exactly one point on the map using
the maximum posterior probability criterion. In agreement with
an earlier study using SOM projections [20], the natural products
and drug-like compounds intermixed strongly (l" Fig. 3). In fact,
more than 60% (856 of 1424) of the natural product clusters also
contained synthetic drugs. Importantly, these co-clustered re-
gions contained more than 70% (110788) of all the natural prod-
ucts. Only 10 drug-like compoundswere projected to a total of six
clusters that were not occupied by any natural product. While we
observed mostly intermixed clusters of the COBRA drug set and
natural products sharing pharmacophoric traits, natural prod-
ucts exclusively populated 568 other clusters. These clusters
might point to pharmacophores that have only rarely been ex-
plored for synthetic drug design. In an attempt to further analyze
this observation and clarify whether it is caused by the biased
sample size, i.e., the small set of synthetic drugs compared to the
much larger DNP set, we projected the ChEMBL compound col-
lection [33] onto the map (the large number of ChEMBL entries
prevented GTM retraining). We considered only 98.8% of the
ChEMBL data (n = 1351370 without duplicate DNP entries) by
avoiding projecting compounds that clearly reside outside of the
applicability domain. We defined the modelʼs applicability do-
main as the region in which the probability density of a molecule
was larger than a threshold value corresponding to the 99.5 per-
centile of the training data (Eq. 3). The ChEMBL compounds
spread almost over the complete spanned chemical product
space, including many of the clusters not populated by COBRA
compounds. It might therefore be a worthwhile exercise to sys-
tematically analyze the ChEMBL entries for activity annotations
and hypothesize related activities for the co-located natural
products (ongoing). Nevertheless, it is important to keep in mind
that there are many natural products and derivatives in ChEMBL
which are not part of the DNP (l" Fig. 4), and that the ChEMBL da-
tawere forced on the GTM trained onlywith DNP and COBRA.We
consequently did not consider ChEMBL data for subsequent GTM
analysis. This decision is supported by the statistically insignifi-
cant difference of compound properties between COBRA and
ChEMBL (l" Table 1), which motivates the use of small, curated
compound sets as surrogates for much larger collections.
We investigated representative natural products located in re-
gions not populated by COBRA drugs (l" Fig. 3A,B). In region A,
we observed highly hydrophilic compounds [e.g., triaspidin (1,
l" Fig. 5) in cluster (29/9)]. While this may be an undesired prop-
erty in many drug discovery projects, pronounced lipophilicity is
not necessarily a requirement for natural products as their secre-
tion and uptake might be governed by different mechanisms or
they might act intracellularly. GTM region B is populated by
guaianolide derivatives [e.g., vestenolide (2) in cluster (7/13)].
This natural product scaffold has recently gained attention for
multiple indications but is still only scarcely studied [34,35].
These select examples reveal the potential of the map to suggest
Miyao T et al. Chemography of Natural… Planta Med 2015; 81: 429–435



Fig. 4 Representative examples of natural products from the DNP co-lo-
cated on the GTM with molecules from ChEMBL but not with COBRA com-
pounds (cf. l" Fig. 3a to e). Most of these ChEMBL entries are also natural
products or natural product derivatives that apparently have no similar rela-
tives among the synthetic drugs from COBRA in terms of their pharmaco-

phore feature patterns. Note that although the configuration of the chiral
centers is shown, this information was not considered for computational
analysis. Numbers in parentheses are (x/y) coordinates of the GTM clusters
highlighted in l" Fig. 3a to e.

Table 1 Substructure counts and properties of the compound collections used in this study.

Data set (unique compounds) H-bond acceptors H-bond donors Rotatable bonds Rings SlogP MW

DNP (n = 157929) 5.9 ± 5.8 2.9 ± 3.6 6.6 ± 6.9 3.5 ± 2.4 2.5 ± 3.3 447 ± 256

COBRA (n = 12644) 3.3 ± 2.0 1.5 ± 1.5* 7.4 ± 5.1* 3.4 ± 1.4* 2.7 ± 2.7 417 ± 136*

ChEMBL (n = 1368655) 3.6 ± 3.5 1.5 ± 2.6* 7.7 ± 8.9* 3.4 ± 1.6* 2.8 ± 2.9 423 ± 245*

* No significant difference of the means (Welchʼs two-sided t-test, p value > 10−6)
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new routes for filling pharmacophoric holes in synthetic com-
pound libraries. We also compared natural products and drug-
like compounds that are actually co-clustered. This analysis al-
lowed us to assess whether functionally similar compounds were
grouped together. GTM region C consists of prostaglandin deriv-
atives from both the natural product collection [e.g., prostaglan-
din J2 (3) at position (9/35)] and the COBRA drug database [e.g.,
gemeprost (4) in cluster (8/34)]. Region D also features com-
pounds that possess convincingly similar pharmacophore pat-
terns in spite of apparent differences in their chemical structures.
Two representative examples are the natural coumarin derivative
mexoticin (5), which has been shown to inhibit platelet aggrega-
tion [36], and synthetic compound 6 [cluster (26/26)]. The cou-
Miyao T et al. Chemography of Natural… Planta Med 2015; 81: 429–435
marin-derived scaffold of mexoticin (5) contains the pharmaco-
phore of psoralen, which is known to induce insomnia as a side
effect in patients [37]. The co-clustered compound 6 is a syn-
thetic orexin receptor antagonist that was developed as a treat-
ment for sleep disorders [38]. Despite their apparent difference
in chemical structure (MACCS‑key based structural Tanimoto in-
dex = 0.27), the GTM suggests that the two compounds share a
pharmacophore pattern. These observations motivate the testing
of mexoticin for orexin receptor binding, and compound 6 for ef-
fects on platelet aggregation. In this way, the GTM may be used
for predicting the macromolecular targets of natural products,
in analogy to the SOM [11,39] and property-based methods [22].



Fig. 5 The chemical structures mentioned in the
text. Note that although the configuration of chiral
centers is shown, this information was not consid-
ered for computational analysis.

Fig. 6 GTM projection of compounds for selected targets (red: vitamin D
receptor; blue: serotonin receptors; green: adrenergic receptors; cyan:
overlap between serotonin and adrenergic receptors). Background coloring
corresponds to the total number of compounds in each cluster. (Color fig-
ure available online only.)
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We investigatedwhether the GTM appropriately spans the chem-
ical space of synthetic COBRA compounds and natural products,
and analyzed representative structures at regions that are heavily
populated. We observed pronounced structural differences in
these clusters. For example, a group of carbohydrate-containing
natural products is represented by quercetin diglycoside (7) lo-
cated at position (40/13) on the map. We found 11-oxooctacosa-
nal (8) at position (11/40) representing a cluster of fatty acids and
derivatives. In contrast to the natural products, the cluster repre-
sentatives of synthetic drugs are not as easily structurally distin-
guishable. However, they represent ligands for different classes of
biomolecules, for example GPCRs (e.g., compound 9) or nuclear
receptors (e.g., compound 10). We aim at connecting the struc-
tural separation of natural products and target-specific regions
on the map for the identification of meaningful relationships of
natural product structures with synthetic ligands of pharmaco-
logically relevant biomolecules. For example, we found DI [40]
[position (1/32)] as a representative natural product in the region
populated by vitamin D receptor ligands. The pharmacophore of
DI closely resembles the one of vitamin D itself but constitutes a
scaffold-hop from the secosteroids to the closed steroidal form.
While this structural modification does not change the relative
positioning of the pharmacophores, as correctly recognized by
the CATS descriptor, it locks the hydrogen bond donor function
in the 6-s-cis conformation [41]. It has been suggested that the
6-s-cis conformation is associated with the immediate response
of vitamin D [42]. Further analysis of DI might reveal its role in
different cellular processes and help to explain these effects. Che-
mographic methods can help in formulating motivated hypothe-
ses for these experiments.
Miyao T et al. Chemography of Natural… Planta Med 2015; 81: 429–435
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Ligands of serotonin (5-HT) receptors occur in six distinctive
clusters on different positions on the map (l" Fig. 6). Interesting-
ly, five of those are adjacent or intermixed with ligands of the ad-
renergic receptor. This is in line with their known pharmacologi-
cal cross-activity [43]. However, one of the clusters is completely
disconnected from any area containing adrenergic receptor lig-
ands [around position (32/12)]. We investigated this area further
and in fact found several compounds known to be selective for
certain 5-HT receptor subtypes without activity on the adrener-
gic receptor family, for example alosetron [position (32/12)] [44],
eplivanserin [position (33/11)] [45], and ramosetron [position
(34/11)] [44]. Apparently, the resolution of the map is high
enough to distinguish such subtle changes in pharmacophores.
GTMs are gaining increasing attention in cheminformatics [25,
46]. In natural product-related studies, GTMs have been applied
to applications outside of drug discovery, for example, in the
analysis of the content of fish oil extracts [47]. An exception is
the study by Owen et al. that used structural MACCs key finger-
prints to distinguish drugs, combinatorial synthetic compounds,
and natural products [48]. Here, we have introduced GTMs as a
technique for dimensionality reduction and target prediction for
natural products based on molecular pharmacophore represen-
tations. We show that this concept allows for relating natural
products and synthetic compounds in spite of clearly observable
structural differences, fully in line with results previously ac-
quired with SOMs [11,20]. Results suggest that the resolution of
a GTM is sufficient to identify functional relationships between
natural products and synthetic drugs. The concept of analyzing
regions of natural product space for a lack of synthetic com-
pounds or the presence of compounds with a desired
polypharmacological profile will make such chemographic meth-
ods a helpful tool for natural product-inspired drug discovery.
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Materials and Methods
!

Data
For GTM analysis, we compiled the natural products contained in
the Chapman & Hall/CRC Dictionary of Natural Products (DNP
v20.1 DNP, 210273 compounds; http://dnp.chemnetbase.com)
[49]. Drugs and drug-like bioactive compounds were taken from
COBRA (v12.6, 13,702 compounds; inSili.com LLC) [30]. ChEMBL
compound data were compiled from database version 19
(https://www.ebi.ac.uk/chembl/) [33]. We removed all duplicates
(5088 compounds) and structures also present in the DNP
(31009 compounds) from the ChEMBL collection, which resulted
in 1368655 remaining ChEMBL entries. All molecules were pre-
processed with the MOE wash node (v2011.10, Chemical Com-
puting Group) as implemented in KNIME v2.9.4 [50] using the
options “protonate strong bases”, “deprotonate strong acids”, “re-
move minor components”, “disconnect salts”, and “remove lone
pairs”. Duplicate structures were removed by grouping according
to canonical SMILES representations. This procedure resulted in
157929 compounds from the DNP and 12644 compounds from
the COBRA database. All molecules were described in terms of
pharmacophore patterns using our in-house CATS2 descriptor
implementation with a correlation distance of 0–9 bonds and
type-sensitive scaling [31]. Consequently, each molecule was
represented by a 210-dimensional topological pharmacophore
representation.
Miyao T et al. Chemography of Natural… Planta Med 2015; 81: 429–435
Generative topographic map
In GTMs, every latent point is connected to the point in the orig-
inal data space according to Eq. 2. Simultaneously, the projected
point is the mean value of a Gaussian and the sum of these Gaus-
sians describes the data distribution (Eq. 3).

yðIi;WÞ ¼ W�ðIiÞ (2)

pðxjI;W; �Þ ¼ 1
K

XK

i¼1

�

2�

� �D
2

exp ��

2
k x� yðIi;WÞk2

� �
(3)

In Eq. 2, li is a latent point, K is the number of latent points, andΦ
is anM-dimensional vector consisting of RBFs evaluated at li. The
matrix parameter W (D × M) governs the projection from a point
in the latent space to the point in the original data space, where D
is the dimensionality (descriptor vector cardinality) of the origi-
nal data space. In Eq. 3, the sum of Gaussian distributions gives
the probability distribution in the data space. Each Gaussian has
the mean value y(li,W) with variance β−1. By using the EM algo-
rithm, locally optimized parameters (W, β) were obtained. We
trained a GTM with (40 × 40) = 1600 latent points that served as
Gaussian cluster centers. The maps were constructed using the
GTM toolbox v1.0 [51] from Matlab 2014a (The MathWorks,
Inc.). During the training, we used 100 RBFs that were aligned
on the lattice in latent space. The width of the RBFs was set to
the distance between neighboring RBF centers. The regulariza-
tion parameter was set to 0.001. We initialized the map through
PCA of the original data. Note that for the estimation of the stan-
dard deviation of the mapping error (RMSE, Eq. 1), we randomly
initialized the mapping parameters (W, β). Applicability domain
was determined based on Eq. 3 with optimized parameters. We
set a 99.5 percentile of the values of descending ordered training
data as the threshold value.
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