
Abstract
!

Nature was and still is a prolific source of inspira-
tion in pharmacy, cosmetics, and agro-food in-
dustries for the discovery of bioactive products.
Informatics is now present in most human activ-
ities. Research in natural products is no exception.
In silico tools may help in numerous cases when
studying natural substances: in pharmacognosy,
to store and structure the large and increasing
number of data, and to facilitate or accelerate the
analysis of natural products in regards to tradi-
tional uses of natural resources; in drug discovery,
to rationally design libraries for screening natural
compound mimetics and identification of biolog-
ical activities for natural products. Here we re-
view different aspects of in silico approaches ap-
plied to the research and development of bioac-
tive substances and give examples of using na-
ture-inspiring power and ultimately valorize bio-
diversity.

Abbreviations
!

ADMET: absorption, distribution, metabo-
lism, excretion, toxicity

ANN: artificial neural networks
BBB: blood-brain barrier
COX: cyclooxygenase
1D, 2D, 3D: one-, two-, three-dimensional
DNMT: DNA methyltransferase
EPS: electrostatic potentials

FAK: focal adhesion kinase
FEMA: Flavor and Extract Manufacturers

Association
GRAS: generally recognized as safe
HERG K+: human ether-a-go-go-related gene

potassium
HDAC1: histone deacetylase-1
HTS: high-throughput screening
MOE: molecular operating environment
NABATIVI: Novel Approaches to Bacterial Target

Identification Validation and Inhibi-
tion

PCA: principle component analysis
PD: pharmacodynamic
PESD: properties encoded shape distribu-

tions
PK: pharmacokinetic
PLA2: phospholipase A2
PPAR: peroxisome proliferator-activated

receptors
QSAR: quantitative structure-activity rela-

tionship
R&D: research and development
SAR: structure-activity relationships
SPID: structure-promiscuity index differ-

ence
SVM: support vector machine
UFSR: ultrafast shape recognition
vHTS: virtual HTS
VLS: virtual library screening
ZINC: free database of commercially avail-

able compounds for virtual screen-
ing
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Introduction
!

“ ‘Biological diversity’ or ‘biodiversity’ means the
variability among living organisms from all sour-
ces including, inter alia, terrestrial, marine and
other aquatic ecosystems and the ecological com-
plexes of which they are a part; this includes di-
ta Med 2015; 81: 436–449
versity within species, between species and of
ecosystems” [1]. Biodiversity is endangered by
human activities, and its decline in some regions
is exacerbated by climate changes. The extent of
such modifications of the environment depends
on complex criteria including geographical, envi-
ronmental, political, and societal conditions [2,3].
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This makes global protection policies, though necessary, very dif-
ficult to implement. Why and how to protect biodiversity? Some
encouraging attempts have beenmade by regional actors to stim-
ulate industry, nonprofit, and academic research in chemical and
life sciences [4], national governments for biodiversity protection
and societal issues [5] or, at a continental level such as the Euro-
pean FP7 project Marex composed of nine European Union coun-
tries and four developing countries, to explore the possible in-
dustrialization of bioactive substances from marine resources
[6]. Ethical and utilitarian arguments are the common points
from the numerous existing examples. Sustainable developments
can be envisaged to valorize biodiversity (i.e., to estimate eco-
nomic value, to highlight its value and/or to increase its value) in
a variety of domains such as biofuels to replace fossil energy [7],
materials, e.g., batteries made with emodin derivatives [8], bio-
mimetics, i.e., nature as a source of inspiration to design newma-
terials, processes, etc… [9], cosmetics [10], functional foods [11],
or pharmacy [12].
Historically, natural products, e.g., plants, have been a source of
food and medicine; as a matter of fact, in ancient civilizations,
the two things are “interchangeable” according to Hippocrates.
Therefore, a lot of knowledge was accumulated as evidenced by
traditional Chinese medicineʼs so-called “Yellow Emperorʼs Inner
Classic” or Dioscoridesʼ “De Materia Medica”, to cite a few. Nowa-
days, with the evolution of analytical techniques [13] and the fast
development and advances of computers, the amount of data
about natural products has grown drastically [14–16]. This al-
lows for the emergence of new strategies to valorize the natural
products, such as reverse pharmacognosy [17,18], by working
with natural flavor molecules [19,20], by relating traditional
medicine concepts to modern Western medicine pathologies
[21], or by using ancestral knowledge as a starting point for sci-
entific investigations [22]. In this review, we focus on the contri-
butions of natural products in drug discovery aided by in silico
techniques with a particular emphasis on the most frequently
used approaches such as database mining, systematic screening
using similarity searching and molecular docking, and inverse
docking techniques.
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Drug Profiling during Research and Development
!

The term “drug profiling” is commonly used by academic groups,
the pharmaceutical industry, and other institutions with drug re-
search centers to define the experimental – and sometimes com-
putational –measurements of physicochemical and pharmacoki-
netics properties, and the biological activities of their new drug
candidates during R&D processes [23].

Pharmaceutical profiling
Pharmaceutical profiling provides opportunities to deprioritize
or eliminate undesirable molecules with unsuitable characteris-
tics during the early stages of drug discovery. This practice has a
great impact on the costs of R&D since unnecessarily passing
along the R&D pipeline a plethora of non-promising pharmaceu-
tical agents is becoming even more labor intensive and resource
demanding with each new R&D stage reached [23]. During the
error-prone attrition phase of discovery, when sorting out and
reducing the amount of drug candidates, many research sites are
establishing in-house drug candidate property guidelines based
on scientifically sound concepts. In addition, thanks to their
high-speed and low-budget nature, computational (in silico) tools
have since been applied to complement or – on occasions – even
substitute certain laboratory assays [23,24]. Those tasks where
they have been proven to be really good at encompass the pre-
dicting of physicochemical properties and, to a lesser extend,
pharmacokinetics for ADMET modeling. The latter simulates at a
molecular level and numerically describes biological processes of
drug absorption, body distribution, biotransformation (metabo-
lism), excretion, elimination as well as toxic behavior. Nowadays,
in vitro biological screening is the preferred tool for PK profiling
[24]. It is undeniable in daily practice that a trade-off does exist
between the fast, neat, and clean computational methods to cal-
culate properties at the expense of data reliability and the by far
more expensive and time-consuming techniques of experimental
measurements in high-tech laboratories [24].

Experimental and in silico profiling
Many observed parameters can also be estimated with com-
puter-based software [25,26] (l" Table 2 in [27]). “Wet” HTS of
compounds can be imitated by vHTS to identify promising candi-
dates for further lead optimization and gives feedback about the
identified single drug target (l" Table 1 in [27]). If a vHTS does not
exist, it can also be carried out against a pharmacophore model
(substructuresʼ interaction of the ligands) [28]. Computer pro-
grams used to predict the substrate selectivity and the regiose-
lectivity (structures of metabolites, sites of metabolism on the
substrates) are presented in the literature [29]. Recently, an alter-
native strategy to single target-based screening has been pro-
posed by Fang using phenotypic profiling [30]. He combined the
examination of the biological endpoints (drug effects) on a spe-
cific phenotypic behavior in cells, tissues, or whole animals. The
advantage is that drug candidates can show their overall disease-
modifying action based on simultaneously hitting several hither-
to unknown biomolecular targets in the cells [30]. Targeting
more than one target (multitarget paradigm) has received atten-
tion as a feasible approach in the literature [31]. The latter must
only be identified when the drug candidates are selected as hits.
The logical workflow can be summarized as: (1) selection of dis-
ease with associated phenotypic endpoints (controlled symp-
toms); (2) phenotype profiling and endpoint(s) screening (by
HTS); (3) intracellular, biomolecular target identification upon
hitting; (4) compound library expansion to enrich it with more
promising candidates; (5) in silico studies like vHTS (in parallel
with HTS) and computational similarity analysis based on the
chemical structures of the early hits for lead structure prioritiza-
tion, ligand docking to target structures, lead compound optimi-
zation, VLS [27], QSAR [28] as well as docking studies to search
for similar substances for compound library expansion; (6) drug
safety profiles and tox screens; (7) preclinical studies; and, fi-
nally, (8) clinical trials (adapted from Fig. 1 in [30]).

Biopharmaceutical profiling
Historically, drug profiling focused on PD as the pharmacological
endpoint with means to describe the molecular mode of action.
Typical efforts embraced in vitro ligand binding assays, and ligand
protein crystallography [24]. All too often the promising sub-
stance did not reveal its poor biopharmaceutical (formulation in-
compatibilities) or PK behavior (ADMET) in the initial stages of
development but rather at the very end of the long road with
the fatal consequences of losing time and money, or even worse
with the complete loss of the candidate as a new drug in the pipe-
line [23]. Another paradigm has been changing during the last
decade or sowhen shifting from late stage profiling to early stage
Do QT et al. How to Valorize… Planta Med 2015; 81: 436–449



Table 2 Natural product database.

Database name Accessibility Data types Advantages Drawbacks

AfroDB [60] Freely accessible from the
supplementary information
of [60]

1000 Compounds; physico-
chemical data and ADMET
properties

Comprehensive predicted
data

No data on plants

ChemNetBase [62] Searches are free; results
browsing under license
http://dnp.chemnetbase.
com

170000 Natural compounds Very comprehensive; fre-
quently updated

Lack of organism data; com-
mercial database

Dr Dukeʼs database [63] Freely accessible http://
www.ars-grin.gov/duke

7500Molecules, 2000 orga-
nisms, 2200 traditional uses;
biological activities

Many ways to query the da-
tabase; huge amount of data

Lack of molecule data (struc-
tures, etc.); not updated
since 1998

GPDB [10] Greenpharma internal
search

140000 Compounds,
160000 organisms, 4360
targets, 10 000 activities,
1000 traditional uses

Rich query system; structural
searches; numerous links be-
tween data

Lack of data, but very fre-
quently updated

KNApSAcK [64] Freely accessible
http://kanaya.naist.jp/
knapsack_jsp/top.html

51000 Molecules, 22000 or-
ganisms, 110000metabo-
lite/species pairs

Frequently updated; query
to database can be imple-
mented in software

No structural search

Napr alert [65] Searches are free, but payper
view for results report http://
www.napralert.org

200000 Publications anno-
tated; organisms;molecules;
biological activities; ethno-
pharmacological data

Very comprehensive; fre-
quently updated

Lack of molecule data; com-
mercial database; lack of
flexibility in results presenta-
tion

Pfaf [66] Freely accessible http://
www.pfaf.org

7000 Plants; traditional uses;
medical and edible quality
scores

Seldom used and original
plants; highly suited to RPG

Nomolecule data

Supernatural [67] Freely accessible http://
bioinformatics.charite.de/
supernatural/

46000 Natural compounds;
molecule characteristics;
supplier data

Similarity searches No organism data

TCM‑ID [68] Freely accessible http://bidd.
nus.edu.sg/group/TCMsite/
Default.aspx

12000 Compounds; 1100
plants; 1200 TCM formula

Interesting relation with
TCM-molecules

Cannot be exported

UNPD [69] Free accessible http://
pkuxxj.pku.edu.cn/UNPD

200000 Compounds Largest noncommercial and
freely available database for
natural products

No data on organisms

Table 1 Empirical descriptors or patterns for a typical biopharmaceutical profile.

Descriptors/parameters/patterns or features References

MW<500 [33]

logP < 5 [33]

Hydrogen bond donors (HBD) < 5 [33]

Hydrogen bond acceptors (HBA) < 10 [33]

Number of rotatable bonds (nrb) < 10 [34–36]

Solubility logS at pH 6.5 > 10mg/L [32]

Topological polar surface area (TPSA) < 140 Å2 [37,38]

Aromatic rings < 4 [39]

GI tract and BBB permeability decreases with a lower log D < 0 [40]

Water solubility and renal excretion increases with a lower log D < 0 [40]

Water solubility andmembrane permeability are “drug-like” in a range of log D between 0 to 3 units (0 < log D < 3) [40]

Water solubility is increased by polar groups, hydrogen bonding, or dissociation into ions or permanent ionization (cations, anions) [40]

Potency increases with higher log D > 5 [40]

Hepatic biotransformation by CYP450 increases with a higher log D > 5 [40]

Water solubility, oral absorption, and bioavailability tend to decrease with a higher log D > 5 [40]

Water solubility increases, and lipophilicity andmembrane permeability (by passive diffusion of a given drug) diminish [40]

Esters and other prodrug solutions increase lipophilicity if the acidic drug is too hydrophilic [40]
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intervention. The ultimate goal of pharmaceutical profiling is to
predict potential drawbacks concerning critical issues of PD and
PK as well as the development of trial dosage forms or final deliv-
ery systems as early as possible and to evaluate drug usage and
security risks in general [23].
Do QT et al. How to Valorize… Planta Med 2015; 81: 436–449
Medicinal chemistry textbooks contain some popular rules of
thumb like the empiric replacement patterns for chemical groups
known as biostereo-isomerism, the traffic light scheme for Lo-
belʼs “Oral PhysChem Score” [32] or “Lipinskiʼs rule of five” [33],
which can be embedded in drug-likeness screens or biopharma-
ceutical profiling efforts (l" Table 1).
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Computer-based profiling
Recently, a theoretical study demonstrated the toxicological
characterization of a series of chemicals with cheminformatics.
To this end, the cytotoxicity profile was estimated on the basis
of structural molecular fragments to identify several moieties
that can be regarded as bearing cell toxicity (cytotoxicophores)
[41]. The detection of fragments with proven or alleged toxic
properties, so-called toxicophores, can be carried out on the
Web-based server Ochem, (https://ochem.eu/) via a link to ToxA-
lerts. The server also provides QSAR modeling. Another helpful,
almost all-in-one solution is Vega ZZ for 3Dmodel generation, bi-
omolecules, manual docking, empirical molecular mechanics
force field calculations or semiempirical quantum mechanics, to
list only a few features [42]. The use is free for public universities
and not-for-profit research institutes. As a general rule for the
software novice, computed values can be used with confidence
if the compound lies within the applicability domain (scope) of
a program [43,44]. Software algorithms looking up databases or
parameter sets when applying empirical equations are more sus-
ceptible than first principle ab initio methods. The latter are not
foolproof either and can fail, too, if the underlying theory does
not reflect natural processes. In general, conventional small or-
ganic molecules are more likely to be in the applicability or “cali-
bration” range. Other structures fall short of expectations be-
cause they possess noncanonical electronic constellations, like
carbamoyl, azid, nitro, sulfon, and metal organic groups or they
are hydrazones, thioesters, etc. Sometimes, electronic, mesomer-
ic effects depend on the conformation (between bridged aryl
rings), and pKa predictions tend to fail. Recent approaches suc-
cessfully applied classification models for drug profiling in com-
bination with public databases (PubChem [27,45], AntiMarin da-
tabase [46]). The success was documented for some modeled ac-
tivities that could be found in the literature and thereby con-
firmed [47].
Newman and Cragg have reviewed the contributions of natural
products as sources of new drugs for three decades from 1981 to
2010 [12,48,49]. They are still important because they provide
the final entity or are starting points in drug discovery (mimetics,
derivatives, botanicals, etc.), particularly in oncology and infec-
tion domains. To date, only one de novo drug obtained from com-
binatorial chemistry has been approved during the reviewed pe-
riod. What makes natural products so successful? What lessons
can the medicinal chemist learn from natural products and their
properties?
In the pharmaceutical industry the attrition rate remains very
high [50], particularly at the later stage of expensive clinical trials.
Therefore a “fail early, fail cheap” paradigm represents an attrac-
tive strategy. Many investigators have tried to capture the es-
sence of existing drugs to extrapolate physicochemical criteria
with the ease of implementation along the drug discovery work-
flow. l" Table 1 lists examples of the different empirical descrip-
tors derived from statistical mining of drug databases. Thanks to
their numerical nature they can be used as prefilters in virtual li-
brary screenings, QSAR studies [28,51], or in compound selection
in general. However, onemust be cautious about their use. For in-
stance, Lipinskiʼs rule of five of “drug likeness” (oral delivery and
passive absorption mechanisms) [33], though widely used, is not
applicable to natural products and does screen out many drugs
derived from natural products. Keller et al. [52] hypothesized that
natural compounds may have evolved over millennia to take ad-
vantage of active transport or gained specific conformations
suited to passive transport. For Kellenberger et al., the reason of
natural drugs may be the similarity of interactions of natural
products with biosynthetic enzymes and therapeutic targets
[53]. As a large number of drugs are derived from natural sources,
we see an overlap of the drug chemical space and the natural
compound space [54]. Indeed, several authors have advocated
mimicking certain physicochemical profiles of natural com-
pounds to synthesize compounds that are more diverse and bio-
logically relevant [54–57], e.g., a reduced number of nitrogen
atoms or aromatic rings, the presence of nonaromatic, polycyclic
core structures, etc.
HTS assays can be perturbed by certain chemical features, gener-
ating a false positive. Rishton surveyed such reactive functional
groups in [58]; among them some can be frequently found in ac-
tive natural compounds and drugs, such as aldehydes, aliphatic
esters and ketones, epoxides, 1,2-dicarbonyl compounds (tanshi-
nones), Michael acceptors (chalcones), peroxides (artemisin de-
rivatives), and disulfides (glutathione disulfides). Some natural
compounds may therefore be filtered out because they are not
suitable for HTS.
Data Mining
!

The scientific literature search, storing, and exploitation are im-
perative and have come to terms with data mining in the modern
ages of electronic information technologies. Information that is
produced and kept in-house (corporate data sources) is not pub-
licly available. Proprietary data can be used by costumers on a
commercial basis, while other sources lay open on the Internet
(free web services). Helpful web sites to assist the profiling
phases are scientific journals, patents, and bioinformatics ser-
vices dealing with genomics, proteomics, and metabolomics.
The literature survey compiles relevant data on comparative or
disease-associated genetics, pharmacogenetics, pharmacody-
namics, pharmacokinetics, metabolic and cellular signaling path-
ways, in vitro and ex-vivo (cell based) pathophysiological models,
etc. [59]. Databases on traditional usage of natural substances are
also booming with descriptions from the organisms to the mole-
cules with folk uses, biological data, and predicted properties.
Ethnopharmacology data offers valuable “clinical” observations
that can guide the drug discovery process (see l" Table 2 for ex-
amples of database). Bernard et al. [19] gathered a list of plants
used in several populations of Latin America in cases of insect
stings or snakebites to find new anti-inflammatory agents target-
ing PLA2. Extracts of plants used by several populations for these
ailments were tested in priority on PLA2. By searching for com-
pounds that were common to the active extracts in their in-
house database, the authors could narrow the possible candi-
dates and perform docking on PLA2 to retrieve betulin and betu-
linic acid as potent inhibitors of PLA2. This predictionwas further
validated by in vitro binding tests. This work demonstrated the
usefulness of computer-based analysis of ancestral knowledge to
guide and accelerate the modern drug discovery process. More-
over, it also enabled experiments to prove some intuitive rela-
tions between folk medicine concepts (insect stings) and modern
medicine pathology (inflammation). Rollinger et al. [21] have
demonstrated the efficiency on combining in silico techniques
with ethnopharmacological knowledge. Molecules from plants
listed in Dioscoridesʼ “DeMateria Medica” as having “anti-inflam-
matory properties” were screened on structure-based pharma-
cophore models of COX 1 and 2. The hit rate using this procedure
was about 100% higher compared to the same virtual screening
Do QT et al. How to Valorize… Planta Med 2015; 81: 436–449
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but on molecules from databases comprising marketed and de-
velopment drug substances or natural compounds.
More recently, an interesting initiative by Ntie-Kang et al. [60] of-
fered access to a database of more than 1000 natural compounds
isolated from African medicinal plants, called AfroDB. The au-
thors calculated numerous descriptors of drug-, lead-, and frag-
ment-likeness and ADMET. They predicted the following ADMET
properties: bioavailability, BBB penetration, dermal penetration,
plasma-protein binding, metabolism, and blockage of the HERG K
+ channel. These parameters were also made available to the re-
search community to help with compound selection, compari-
son, and virtual screening. The p-ANAPL library [61] containing
most of the compounds of AfroDB was supplied upon request to
the authors for in vitro validation. This type of initiative will no
doubt encourage drug discovery from African plants and collabo-
rations to valorize these resources.
The wealth of structural data on natural compounds allows in-
vestigators to compare drugs with natural compounds, and vice
versa, to derive SAR and, subsequently, to deduce putative biolog-
ical activities. Similarity searching is a fertile approach in drug
discovery.
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Similarity Searching
!

Similarity-based screening or similarity searching is a typical lig-
and-based approach that can be conducted without prior knowl-
edge of the 3D structure of the target. This approach is based on
the notion that similar compounds have similar activity [70]. Re-
markable exceptions to this concept are the “activity cliffs”, i.e.,
similar compounds with an unexpectedly high activity differ-
ence. The interested reader is referred to reviews that address in
detail the role of activity cliffs in medicinal chemistry and elabo-
rate on the computational approaches to identify them [71,72].
Similar to other computational screening efforts, similarity
searching should be part of an iterative process that involves the
prediction, experimental testing of selected compounds, and de-
sign of new chemical data sets based on the structure of the ex-
perimental hits. Also, if enough information of the system is
available, e.g., 3D coordinates of the target, similarity searching
should be combined with other ligand-based and/or structure-
based methods. The selection of a particular approach or set of
methods depends on the aim of the project, the information of
the system, and the computational resources available. Moreover,
one needs to consider the inherent limitations of each step in-
volved and the associated computational cost.
In natural products research, the combination of computational
approaches has been emphasized by Yue et al., who have recently
discussed progress on the target profiling of natural products us-
ing experimental (genomics and proteomics) and computational
approaches [73]. In that review, Yue et al. emphasized the conve-
nience of integrating various methods, such as inverse docking
(docking compounds across different targets), mapping ligand-
target profiling space, and network analysis.
Similarity searching can be combined with other current major
strategies in drug discovery such as drug repurposing. A recent
example of this successful synergy is the similarity searching of
a database of approved drugs that led to the identification of ol-
salazine, an anti-inflammatory drug approved for the treatment
of ulcerative colitis, as a novel DNA hypomethylating agent [74].
Comprehensive reviews of virtual screening that cover methods,
successful applications, pitfalls, and workarounds are published
Do QT et al. How to Valorize… Planta Med 2015; 81: 436–449
elsewhere [75–78]. Advances in the progress in the virtual
screening of NPs have also been presented [79–85].
Any similarity searching involves several essential components,
which are briefly outlined below.
A) One or more query or reference molecules that are compared
against a molecular data set. The reference molecule is typically a
chemical structure that can be represented in 2D or 3D. In gener-
al, in similarity searching, a notable advantage of 2D over 3D ap-
proaches is computational speed since most 2Dmethods (with
the exception of those using chemical graphs) do not require
costly structure alignments. In contrast, many but not all 3Dme-
thods require such alignments [86]. Moreover, 3D approaches
have to deal with the conformational flexibility of the molecules,
which, in many instances, give rise to multiple low-energy con-
formers. Diverse solutions have been proposed to alleviate this
problem [87]. Currently, most 3D similarity searching studies
use a single low-energy conformer (usually the global minimum
or other representative 3D conformation). This, in any case, raises
the question if such a conformation is biologically significant
[88].
The performance of 2D and 3D similarity approaches has been
compared directly in a number of applications, including virtual
screening [89–92]. Since 3D similarity searching should incorpo-
rate, at least in principle, more accurate features than 2Dme-
thods, it would be expected that the results obtained from
3Dmethods should be more reliable than those obtained by
2Dmethods. However, in many instances, 2D approaches have
outperformed 3D approaches, although it has been noted that
this superiority is somewhat case-dependent [92].
Depending on both the data set and the biological activity, it is
feasible that one or more reference compounds are associated
with activity cliffs. In other words, they may be an “activity cliff
generator” (defined as a molecular structure that has a high
probability of forming an activity cliff with molecules tested in
the same biological assay) [93]. Since, as discussed above, activity
cliffs are exceptions to the similarity principle and lead to mis-
leading results in similarity searching, it has been proposed that
activity cliff generators be identified and removed from the data
sets before selecting the reference compounds. In addition, the
removal of activity cliff generators has been proposed as a gener-
al approach to be employed before developing predictive models,
such as those obtained with traditional QSAR or other machine
learning algorithms based on the similarity property principle
[94].
B) Another element in similarity searching is the compound data-
base. Compound databases have been reviewed elsewhere, in-
cluding collections of natural products in the public domain
[95]. A current trend in screening libraries for drug discovery is
to balance chemical novelty with confined chemical space [96].
In this context, natural product databases (and natural product
derivatives) are excellent sources for virtual screening as they ex-
pand the currently known medicinal chemistry space [97]. The
“expansion” is associated in part with molecular complexity. This
feature makes natural product databases attractive to identify
compounds with a high selectivity towardsmolecular targets (in-
cluding a target family) and can be ideal resources to identify
“master key” compounds that selectively bind to a series of tar-
gets in order to yield a desired clinical effect [31]. Examples of
specific and appealing regions in chemical space covered by data-
bases of natural products include peptides and macrocycles [96].
C) A third and critical component in similarity searching is chem-
ical representation, which is at the core of virtually any chemoin-



Table 3 Representative and recent studies using similarity searching to uncover bioactive compounds in natural products and related compounds.

Study Similarity searching method used Ref.

Sequential virtual screening of ZINC natural compounds identifies
five compounds as PPAR-γ partial agonists.

Electrostatic and fingerprint-based similarity analysis combined
with ADMET and structure-based filtering.

[103]

Sequential docking-based virtual screening followed by similarity
searching to select promising inhibitors of DNMT1 in two natural
products collections.

Fingerprint-based similarity searching using MACCS keys and the
similarity coefficients Tanimoto and Tanimoto-substructure.

[104]

Searching of GRAS compounds to uncover compounds similar to
approved antidepressants. Identification of nonanoic acid and 2-
decenoic acid (similar to valproic acid) as inhibitors of HDAC1.

Fingerprint-based similarity searching with MACCS keys/Tanimoto. [19]

Structural comparison of the FEMAGRAS list with analgesics and
with compounds used as satiety agents.

Comparison based on physicochemical properties and seven struc-
tural representations obtained from three different software pro-
grams.

[105]

Similarity searching to identify compounds in a compiled database
of phytochemicals with activity against a protein involved in the co-
lon cancer pathway or a colon cancer drug target.

Text mining in PubMed abstracts led to the collection of more than
20000 diverse chemical structures present in the human diet. Au-
thors systematically explore their numerous targets using chemo-
informaticsmethods.

[106]
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formatics application. However, chemical representation is not
an easy task because similarity is a subjective concept. It is largely
known that chemical space (including similarity searching) de-
pends heavily on molecular representation. It has been shown
that if one uses different representations in similarity searching,
the hit compounds (the most similar molecules to the query) will
likely be different [98]. In actual applications of similarity search-
ing, and molecular similarity analysis in general, a number of dif-
ferent types of representations are used. The information con-
tained in the representations is usually in the form of molecular
or chemical features called descriptors that are obtained from the
structural and chemical properties of molecules. Descriptors are
nominally classified as 1D, 2D, or 3D. 1D descriptors are com-
monly related to whole molecule properties such as molecular
weight, logP, solubility, number of hydrogen bond donors, num-
ber of rotatable bonds, etc. 2D descriptors are associated with the
topological structure of molecules as typically depicted in chem-
istsʼ drawings. This type of representation shows the atoms, the
bonds connecting them, and in some cases includes stereochem-
ical features, but they do not explicitly depict the 3D structures of
molecules. 3D descriptors, as their name implies, are associated
with the 3D structures of molecules [88]. Todeschini and Conson-
ni have assembled a comprehensive list of the descriptors used in
chemical informatic applications [99].
Despite the fact that many descriptors are available, it is highly
unlikely that a single representation and set of descriptors will
capture all of the many different aspects of molecular and chem-
ical information [88]. Therefore, in order to reduce the impact of
the dependence of chemical representation in similarity search-
ing, it has been proposed to use several methods and then com-
bine the solutions. This is called “data fusion”, and the group of
Willet is a pioneer in this field [100]. A recent exhaustive study
conducted by Holliday et al. [101] provides strong evidence that
suggests that fusion-based approaches to similarity searching
yield improved results over single-search-based similarity meth-
ods. Following a similar approach, the use of several molecular
representations and then the combination of such representa-
tions has been implemented in different areas of chemoinfor-
matics, including activity landscape modeling. In the latter, the
term “consensus activity cliffs” have been proposed [102].
D) A fourth component of similarity-based virtual screening is a
similarity measure which, in turn, depends on three elements:
(1) the representation used to encode the desired molecular and
chemical information, (2) whether and how much information is
weighted, and (3) the similarity function, also called the similar-
ity coefficient, that maps the set of ordered pairs of representa-
tions onto the unit interval of the real line [88].
Using the components of similarity searching outlined above, dif-
ferent groups have been using similarity searching alone or in
combinationwith other computational approaches to uncover bi-
oactive compounds from natural products. Examples of recent
investigations are summarized in l" Table 3 and described in the
following paragraphs.
Guasch et al. used a combination of computational methods to
identify five PPAR-γ or PPARG [107] partial agonists from a com-
pound collection with more than 89000 natural products and
natural product derivatives from ZINC [108]. The authors of that
work implemented a sequential or cascade virtual screening ap-
proach using a set of ADMET filters, structure-based pharmaco-
phore screening, molecular docking, electrostatic, and finger-
print-based similarity analysis. A total of ten compounds with
different chemical scaffolds were selected for experimental val-
idation using in vitro assays. All five compounds were confirmed
as PPAR-γ partial agonists [108].
Also in a combined approach, Medina-Franco and Yoo imple-
mented a sequential computational screening of five compound
libraries to identify candidate compounds for testing as potential
inhibitors of DNMT1. The referencemolecule was a knownDNMT
inhibitor recently identified from HTS whose chemical structure
was made publicly available in PubChem. The compound data-
bases screened included two collections of natural products, a
DNMT-focused library, a general screening collection, and a set
of approved drugs. Similarity searching was performed using
the widely used MACCS keys (166 bits) as implemented in MOE.
The molecular similarity was computed using two measures, Ta-
nimoto and Tanimoto-substructure. Of note is that Tanimoto-
substructure takes into account the putative different sizes of
the query molecule and the compounds in the databases
screened. Compounds selected from similarity searching were
subject to docking with a crystallographic structure of human
DNMT1 using a validated docking protocol. At least 108 mole-
cules with promising DNMT1 inhibitory activity were identified.
The chemical structures of the computational hits were disclosed
to encourage the research community working on epigenetics to
experimentally test the enzymatic and demethylating activity in
vivo [104].
Do QT et al. How to Valorize… Planta Med 2015; 81: 436–449
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Feng et al. [109] used chemoinformatics analysis based on Lipin-
skiʼs rule-of-five, ChemGPS‑NP [110] principal component analy-
sis, and chemical clustering to compare a set of antitrypanosomal
marine natural products with approved drugs to prioritize prod-
ucts with a similar profile as the reference drugs.
GRAS compounds are largely comprised of natural products. A
recent and notable application of similarity searching of GRAS
compounds for bioactive compounds is represented by the work
of Martinez-Mayorga et al. In that work, the authors searched for
similar structures to approved antidepressant drugs in the food
flavoring components in the FEMA GRAS list [19]. The virtual
screening was conducted using fingerprint-based similarity
searching with the MACCS keys and the Tanimoto coefficient.
Hit compounds in the FEMA GRAS list were chosen as the most
similar compounds (ranked with the highest similarity values)
to any of the 32 approved antidepressant drugs. Selected com-
pounds represented the “nearest neighbors” of the approved
antidepressants. Valproic acid was the most similar antidepres-
sant to GRAS molecules. Based on the knowledge that the inhibi-
tion of HDAC1 could be related to the efficacy of valproic acid in
the treatment of bipolar disorder, Martinez-Mayorga et al.
screened the GRAS compounds most similar to valproic acid for
HDAC1 inhibition. The GRAS compounds nonanoic acid and 2-
decenoic acid inhibited HDAC1 at a micromolar level with a po-
tency comparable to that of valproic acid. Of note is that the GRAS
chemicals were not expected to have strong enzymatic inhibitory
effects at the concentrations typically employed in flavor formu-
lations designed for use in foods and beverages. However, as
shown in that work, GRAS chemicals were able to bind to a rele-
vant therapeutic target. That study also served as a proof-of-prin-
ciple of the feasibility of exploring the FEMA GRAS flavoring list
using computational methods as a potential source of biologically
active molecules. In addition, the study demonstrated that simi-
larity searching followed by experimental evaluation could be
used for rapid identification of GRAS chemicals with potential bi-
oactivity [19].
In two subsequent and separate studies, Martinez-Mayorga et al.
employed structural similarity to compare the FEMA GRAS list
with analgesics and with compounds used as satiety agents
[105]. The list of analgesics used as query molecules contained
ten structurally diverse molecules currently used in clinics. A to-
tal of eight satiety agents were identified in the literature, which
were used as reference compounds for similarity searching. The
satiety agents included those currently used in clinics, as well as
those still in clinical trials. In both studies, reference compounds
were compared with the FEMA GRAS list using a total of seven
structural representations obtained from three different soft-
ware programs, MOE, ChemAxon, and PowerMV. Compounds
identified by different programs and representations were cho-
sen as consensus compounds for additional studies. Then, a
chemical space was constructed based on physicochemical prop-
erties. Nearest neighbors were identified based on Euclidian dis-
tances, considering all the dimensions (properties). Based on the
comparison of structural features and physicochemical proper-
ties, two FEMA GRAS compounds were selected as being similar
to the reference analgesics. In the second study, a total of nine FE-
MA GRAS molecules were identified as being similar to those
used as reference satiety agents. For compounds having a known
mode of action, in vitro studies using the identified GRAS chemi-
cals could help determinewhether or not theymay have a satiety
or analgesic effect in humans. However, it must be considered
Do QT et al. How to Valorize… Planta Med 2015; 81: 436–449
that in the large majority of cases biological effects result from
complex and multiple interactions in the body [105].
As previously discussed in this review, phytochemicals derived
from edible plants are notable sources of bioactive molecules. In
a recent study, Jensen et al. [106] performed a high-throughput
analysis of phytochemicals in order to reveal associations be-
tween diet and health benefits using text mining and chemoin-
formatic methods. The first step of that work was the retrieval
of associations between the terms plants and phytochemicals
from 21 million abstracts in PubMed/MEDLINE during the period
1998–2012. This information was merged with the Chinese Nat-
ural Product Database and the Ayurveda data set, which was also
curated by the authors. The final data set included nearly 37000
phytochemicals. A major outcome of that study is the structured
and standardized database of phytochemicals associated with
medicinal plants. The authors pointed out that their approach fa-
cilitates the identification of novel bioactive compounds from
natural sources, and the repurposing of medicinal plants for dis-
eases other than those for which they are traditionally used, with
the added benefit that the information collected can help eluci-
date a mechanism of action [106]. As a case study, Jensen et al.
conducted structural similarity searching in order to find mole-
cules in their compiled database of phytochemicals with activity
against a protein involved in the colon cancer pathway or a colon
cancer drug target. The reference compounds were those re-
ported in ChEMBL. A set of molecules from this study not only
showed reported health benefits against colon cancer, but activ-
ity was also verified against colon cancer protein targets [106].
Polypharmacology and Chemogenomics in
Natural Products Research
!

The increasing awareness that a drug may have its clinical effect
through the interaction of multiple targets (called “poly-
pharmacology”) is changing the drug discovery paradigm from a
single target to a multi-target approach [31]. This change is en-
riching chemogenomics data sets that capture ligand-target rela-
tionships [111]. As a consequence, a number of computational
and experimental approaches are being developed to generate,
store, analyze, mine, and visualize target-ligand interactions that
define chemogenomic spaces [112–114].
Using the literature reports, the identification of the pharmaco-
logical evaluation of compounds (in particular with novel chemi-
cal structures) isolated from natural sources is frequent. The
pharmacological evaluation usually includes a handful of biolog-
ical endpoints. In light of the generation of chemogenomics data
sets, natural products are being evaluated systematically across a
large number of biological endpoints, and the screening data is
being released to the public. A representative example of a che-
mogenomics data set that contains natural products is the large
microarray data released by Clemons et al. [115]. In that work,
the authors evaluated the binding specificity of 2477 natural
products (whichwere part of a larger collectionwith 15000 com-
pounds) across 100 sequence-unrelated proteins. The authors re-
leased the results of the screening to the public domain (the in-
terested reader has access to the screening data along with the
chemical structures in the paper of Clemons et al. [115]). The mi-
croarray data set has been analyzed with chemoinformatic ap-
proaches with the goal of elucidating the SAR; in particular to un-
cover structural characteristics related to the selectivity or pro-
miscuity of the molecules using fingerprint or substructure rep-
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resentations [116–118]. For instance, Yongye and Medina-Franco
developed the SPIDmetric to quantify and uncover specific struc-
tural changes that have a significant impact on the number of
proteins to which a compound binds [116]. In a subsequent pub-
lication, Dimova et al. reported an analysis of the same data set
using matched molecular pairs [119] to identify single-site sub-
stitutions that are associated with large magnitude differences
in apparent compound promiscuity. The results of Dimova et al.
further confirmed the results of Yongye and Medina-Franco pre-
viously published in that promiscuity can be induced by small
chemical substitutions.
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Docking
!

The concept of one disease/one target was a milestone in modern
molecular medicine because it enabled the simplification of com-
plex in vivo symptoms and related them to simple in vitro mod-
els. Though this paradigm is shifting to multitargets [31] as our
knowledge progresses, this reductionist approach did prove suc-
cessful in many diseases. To better understand the molecular
mechanism of action of molecules on their biological targets, sev-
eral methods were developed to determine the 3D structure of
these proteins, e.g., X‑ray, NMR, and electron microscopy. During
the past decades, the number of solved protein crystallographic
structures grew exponentially, and now tops at 94000 structures
(statistics from the PDB homepage [120]). At the same time, com-
puter power has also increased dramatically. Molecular model-
ling software could then be developed to exploit these types of
data. The first docking software was DOCK [121]. Docking refers
to methods that predict the orientation of a molecule bound to
another. The stabilities or the affinities of the resulting complex
are estimated by a mathematical or scoring function [122]. Many
different strategies and algorithms for docking exist, e.g., Auto-
Dock [123], FlexX [124], Glide [125], Gold [126], and Surflex
[127], to predict the positioning of molecules into the protein-
binding site. Authors have also studied scoring methods to im-
prove the hit rate. Many are related to their cognate docking soft-
ware (refer to the review by Li et al. [128] describing 20 scoring
functions). Because different docking software and scoring func-
tions have different strengths and weaknesses, several authors
tested the combination of docking and scoring methods to find
the optimal procedure [129], while others proposed to use con-
sensus scoring to accommodate the weaknesses [130–133]. The
scoring of the predicted poses from docking will be performed
by several scoring functions, not only by one. Predictions well
scored by multiple scoring functions will be better ranked. Inter-
ested readers can refer to [134] for a review of several consensus-
scoring methods. As the scoring is dependent on the pose predic-
tions, authors have also worked on improving this step by using
consensus docking. It consists in retaining the poses predicted by
a majority of docking software [135–137]. In an ideal case, the
software can be selected because the natural substance is struc-
turally related to either a ligand or a receptor, or even both, which
belong to the softwareʼs calibration set resulting in a higher con-
fidence that the computed solutions are trustworthy [138].
Sometimes docking problems arise when the target receptor is a
constitutively inactive mutant or exists in unliganded states (in-
active vs. active); it could also be under allosteric control (confor-
mational modulation) [139].
Natural products remain a large source of active products and al-
so an inspirational source for medicinal chemists; most of the re-
sources, particularly from the microorganisms, are underex-
ploited [12]. Structure-based techniques constitute a possible
way to find new applications to these natural products. The ma-
jority of drugs in oncology and biocide products are derived from
natural products. It is not surprising that many docking studies
with natural products fall in these therapeutic domains.
Thiyagarajan et al. [140] targeted FAK by docking a library of 109
natural products. Four selected candidates showed activity of C6
glioma and N18 neuroblastoma cell lines by promoting apopto-
sis. Medina-Franco and Yoo [104] screened by combining struc-
ture-based pharmacophore filtering and docking on DNMTwith
a library composed of natural products, approved drugs, a
DNMT-focused library, and general screening compounds. One
hundred and eight potential hits were disclosed to the scientific
community for experimental validation. Hussain et al. [141]
adopted a docking strategy coupled to a 3D‑QSAR to predict the
activity of the analogues of aplyronine A that bind to actin. Their
models may be helpful in designing more efficient and tolerable
antitumor agents.
Docking may be used to assess the bindingmode of natural prod-
ucts and subsequently guide the design of more potent candi-
dates. For instance, the comparative docking of forskolin (activa-
tor) and labd-13(E)-ene-8a,15-diol diterpene (inhibitor) into the
active site of adenylyl cyclase revealed important features in the
binding mode of the activator and the inhibitor, allowing for the
design of potential cytotoxic and cytostatic agents against cancer
cells [142].
Due to antibiotic multiresistant bacteria, finding a new class of
antibiotics with a new mode of action has become of paramount
importance. This can be evidenced by numerous public fundings
at national or international levels. A list of the multimillion Euros
projects financed by the EU can be found in [143]. It is notewor-
thy that the NABATIVI project [144] succeeded in finding a pepti-
domimetic product with a new mode of action targeting a mem-
brane receptor [145]. This product is in clinical trial phase II.
Docking techniques were extensively applied not only to discover
new antibiotics but also antiviral, antifungal, or antiprotozoan
products. One strategy that is successful so far is to target essen-
tial bacterial genes, whose inhibition will kill the microorgan-
isms. An example of a structure-based screening on an essential
gene such as the filamenting temperature-sensitive mutant Z
(FtsZ) provides promising leads [146]. Other authors also per-
formed docking studies to demonstrate the bactericidal poten-
tiality of xanthone derivatives [147]. An interesting use of dock-
ing was exemplified by Harris et al. [148]. They performed dock-
ing on the bacterial essential enzyme peptidyl-tRNA hydrolase to
identify possible active compounds and guide their activity-di-
rected isolation to discover antibacterial molecules from an etha-
nol bark extract of Syzygium johnsonii. For examples of drug dis-
covery from natural compounds using docking to target viruses,
fungi, and protozoan parasites, the reader is invited to consult the
following respective works: [149] reviewed several in silico ap-
proaches to tackle urgent threats caused by new viruses or their
variants (HIV, SARS, etc.) and how helpful computational tech-
niques were to disclose the antiviral properties of natural prod-
ucts; docking studies helped to hypothesize the mechanism of
action of antifungal pyranocoumarin derivatives in [150,151];
the authors performed docking studies with geldanamycin tar-
geting the HSP90 homolog proteins of pathogenic protozoans
Plasmodium falciparum, Leishmania donovani, Trypanosoma bru-
cei, and Entamoeba histolytica. This work allowed for designing
Do QT et al. How to Valorize… Planta Med 2015; 81: 436–449



Table 4 Databases useful for target fishing.

Database name Accessibility Data types Advantages Drawbacks

PDB [155] Freely accessible http://www.
rcsb.org/pdb

94000 Protein structures
with unique PDB code

Reference database; standard
PDB format

Lack of data about biological
activities

BRENDA [156] Freely accessible http://www.
brenda-enzymes.org

4800 Enzymes; ligands; orga-
nisms; biological activities

Very comprehensive data-
base

Only enzymes

TTD [157] Freely accessible http://bidd.
nus.edu.sg/group/cjttd/
TTD_HOME.asp

1900 Targets; 5000 ligands;
biological pathways and ac-
tivities; patents

Very useful for reverse phar-
macognosy; frequently up-
dated

Relatively small amount of
data

PDTD [158] Freely accessible http://www.
dddc.ac.cn/pdtd/index.php

1200 Aelected protein struc-
tures; biological activities;
cross-linked with other data-
bases

Link toTarFisDock, an inverse
screening platform

Relatively small amount of
data

Sc-PDB [159] Freely accessible http://
bioinfo-pharma.u-strasbg.fr/
scPDB

3D structures selected from
PDB

Useful to enrich a target data-
base for inverse screening

Only a subset of PDB

Drug Bank [160] Freely accessible http://www.
drugbank.ca

2500 Proteins; 4800 drugs;
pathways

Important part of FDA-ap-
proved drugs and proteins

Lack of data about biological
activities

ChEM BL [160] Freely accessible https://
www.ebi.ac.uk/chembldb/

1.4Million compounds;
10000 targets; 13millions
activities

Very comprehensive Results may be complex to
analyze
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selective analogues of protozoan HSP90with a reduced affinity to
the human homologue.
Finally, some investigators applied docking on several targets to
identify molecules with synergistic effects on a particular biolog-
ical pathway, e.g., modulation of testosterone [10]. Bernard et al.
identified honokiol as a dose-dependent inhibitor of aromatase
and 5-alpha-reductase 1; the inhibition of both enzymes miti-
gates the decrease of the testosterone level in aging men. Note-
worthy is that honokiol is not active on the 5-alpha-reductase 2.
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Target Fishing
!

The researchers quoted above not only applied docking to screen-
ing but also for identifying putative interacting protein partners
(or “target fishing”), hence the mode of action of natural com-
pounds. In each case, the authors have to hypothesize the possi-
ble target based on an “educated guess” or hints from the scien-
tific literature. A docking study is performed with the active mol-
ecules to the selected protein target, and the score of the complex
is evaluated. According to this score, the authors will then judge
the plausibility of that ligand-protein interaction. An obvious
caveat of such an approach resides in the picking of the targets,
which will miss targets that are not evident or targets not yet
known to be related to the biological effects.
To circumvent this difficulty and explore systematically possible
interactions of a molecule with proteins, inverse docking was
first introduced by Chen and Zhi in 2007 [152]. It consists in
docking a molecule to a set of 3D protein structures. Therefore,
inverse docking is in need of a docking program (see previous
section) or a more specific tool in combination with a database
of 3D protein structures (see l" Table 4 for a list of possible data-
bases). Docking software generally lacks the ability to correctly
rank possible ligands in one site. This represents a serious limita-
tion. Several authors developed corrected scoring functions to
work around this limitation [153] and demonstrated the feasibil-
ity of this technique [154]. Vigers and Rizzi [153] showed that
their new scoring function could assess the selectivity of com-
pounds among a family of proteins, such as kinases, and selectiv-
ity among proteins of unrelated families.
Do QT et al. How to Valorize… Planta Med 2015; 81: 436–449
Inverse docking plays a key role in the concept of “reverse phar-
macognosy” introduced by Do and Bernard [161] and extended
by Blondeau et al. [17]. Pharmacognosy starts with natural sour-
ces (e.g., extracts of plants and microorganisms) and thanks to
activity-guided fractionation, identifies the molecule(s) respon-
sible for a biological activity. Conversely, reverse pharmacognosy
begins with a natural molecule and, thanks to inverse docking,
identifies putative targets of interest. The predictions are then
validated with related in vitro assays. Thanks to a database link-
ing molecules and the organisms producing them, we can identi-
fy new applications for plants, for example, with the mode of ac-
tion at the molecular level (ligand-protein interactions). With
this approach, Do et al. could identify protein interacting part-
ners for epsilon-viniferin from Vitis vinifera, which inhibits phos-
phodiesterase 3 and 4 [162], and for meranzin from Limnocitrus
littoralis, which blocks COX 1 and 2, and activates PPAR-γ [163].
Thus, extracts from these two plants at an adequate concentra-
tion of the active molecules may be used in indications involving
the described proteins.
Other scenarios of inverse docking were described for pharmaco-
logical profiling of natural products [164], either to understand
the mode of action as well as repurpose molecules, e.g., tanshi-
none IIa [165], or to evaluate the toxicity profile [166].
Only a few software programs have been developed for inverse
docking, but the field is gaining more and more attention, as we
can notice through the development of tools based on an existing
docking engine or on a specific software: Invdock [152], iRAISE
[167], Mdock [168], Selnergy [161] based on the Surflex pro-
gramme, Tarfisdock [169] based on the DOCK programme, and
TarSearch-X [170]. Inverse docking is not yet mature technology
but should mutually fertilize other approaches, e.g., chemoge-
nomics and bioinformatics.
It should bementioned that inverse docking is one out of the sev-
eral techniques available to conduct target fishing. Other com-
mon approaches such as data mining and similarity searching
(see above) are extensively used to explore putative targets of bi-
oactive compounds. In similarity searching, targets are repre-
sented by their ligands and query molecules are compared with
the known ligands. Based on the concept of SAR, similar molecu-
lar structures will certainly have similar biological activities.
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Thus, by finding similar ligands to query structures, one can re-
late the query compounds to the ligandsʼ targets. Databases such
as DrugBank, PubChem, and ChEMBL [171] are key to have as
many as possible interaction pairs of ligands and targets. Ma-
chine learning techniques (e.g., Support Vector Machine, Neural
Networks [172,173]) are also popular to identify the relationship
of molecules and possible targets. These systems are usually
trained with a training set of known pairs of ligands/proteins
based on descriptors, then validated with an external validation
set (known pairs of ligands/proteins not used to build the mod-
els). We will evoke in the next paragraph the different types of
descriptors. Structure-based and other computational ap-
proaches for target fishing are reviewed elsewhere [80,174].
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Pharmacophoric and Other Descriptors in

Virtual Screening
!

A crucial point for the success of virtual screening is the design of
the filter layer that constitutes the similarity patterns to retrain
the potential candidates and discard the reminder. Many virtual
screening programs have special graphical or scripting methods
to write such filter definitions. Sometimes they consist of physi-
cochemical properties, for example, “filter out all compounds
with pKa greater than… and/or without aryl rings… and/or with
a nonpolar surface larger than”. On occasion, they also describe a
substructure of the scaffold common to all or almost all expected
hit compounds. The underlying assumption is twofold: (1) the
existence of a pharmacophore, “an ensemble of steric and elec-
tronic features that is necessary to ensure the optimal supramo-
lecular interactions with a specific biological target and to trigger
(or block) its biological response” [78,175] and (2) similar chem-
icals have similar biological activities [176]. Ligand-based virtual
screening for structures with similar pharmacophoric patterns
has become a successful method to identify potential drug candi-
dates. Some of the latter find their role as lead compounds for
lead expansion, lead hopping, and scaffold hopping in the desired
therapeutic area. When 3D structures or homology models of the
target protein are available, protein-based screening can be car-
ried out. The pharmacophore defines spatial requirements like
interatomic distances, angles, or the location of particular prop-
erties, and ionic sites as well as other descriptors that depend on
the spatial coordinates. Such 3D information renders the screen-
ing query (filter) more precise but also more error-prone. Hence,
not unexpectedly, researchers noticed that virtual screening
based on 2D fingerprints (filter concepts based on atoms and
bonds and their connectivity but without spatial coordinates)
could be more successful than 3D pharmacophore. The authors
recommended the combination of 2D and 3D descriptors [176].
Sometimes the sheer number of conformations under which
compounds are collected is so overwhelming that the docking,
screening, or simply identifying relationships between com-
pounds based on their shape similarities risks overthrowing the
computer resources at hand. Thus, screening for whole mole-
cules, their side chain substituents, or their central scaffolds by
conformationally-independent topomer similarities becomes a
useful strategy. The partitioning of solutes in liquids along with
surface defining descriptors, like nonpolar surface area, solvent
accessibility, etc., is commonly applied in ADMET prediction
models or in studies of membrane crossing, transport into cell
compartments, or diffusion kinetics. The partial charges of the
compounds can be calculated and projected as isocontour lines
in the space surrounding the molecule of interest. TARIS is an ap-
proach based on such molecular EPS. The classes and types of de-
scriptors are far too many, thereby lying beyond the scope of this
review [177] (refer to topics in cheminformatics, e.g., GETAWAY,
3DMoRSE, MS-WHIM, FEPOPS circular fingerprints, MACCS keys,
or graph-based multi-point pharmacophore as well as the so-
called ROCS shape descriptors [178,179]). ROC profiles (receiver
operating characteristics) show a sort of hit enrichment in the fi-
nal solution list against other compounds, e.g., decoys for testing
(benchmarking), docking, and screening simulations. They have
highly similar structures but are biologically inactive. Awell-per-
forming method should discard them from the hit list [180].
Although the number of descriptors used in a study may end up
in the thousands, the right choice remains a challenging task of
its own kind. Apparently, descriptors fail in reflecting in exactly
which item the molecules resemble each other. PCA, a sort of sta-
tistical factorial analysis, simplifies the level of data complexity to
a minimum set of orthogonal (independent) diagram axes (fac-
tors or components). PCA eventually sheds some light and ex-
plains some of the failures and downside when molecules are
screened [181].
When needing to save time and running costs, HTS can be ele-
gantly simulated in silico by screening virtual libraries (vHTS)
[182]. To this end, vHTS descriptors have been developed, which
do not need a lengthy superposition of data set molecules (for
comparison) like PESD or UFSR. In addition, other techniques
have been developed, for instance, 2D and higher dimensional
QSAR, SVM, rule-based methods, or ANN [28]. ANN outperforms
rule-based pharmacophore screens in those cases when decision
taking in a straightforwardmanner is not behaving well, or tenets
are ill-designed or believed to be just “better than no rule at all”.
Such rule-based pharmacophore screens generally make use of
binary variables (simple “Yes/No” criteria) or integer values (the
Lipinskiʼs rule-of-five, more than five hydrogen bonds, etc.). The
architecture of ANNs is based on a multilayer of criteria with in-
dividual weight put on them by training, i.e., probabilities of their
contribution to yield the right answer which is a priori known
during ANN training. What the ANN learned (as a black box to
the user) through the training set of known cases is then applied
to the test set. Although very complex phenomena can be han-
dled, wrong answers emerge, mostly in cases when the molecule
has unforeseeable characteristics.
Conclusions and Perspectives
!

Thanks to the large amount of information accumulated on natu-
ral product research, in silico techniques related to chemoinfor-
matics, database mining, and molecular modeling facilitate the
use of this information to further valorize natural products as a
source and/or inspiration of drugs. In silico approaches enable
the characterization of their physicochemical profile, analysis of
chemical diversity, coverage of chemical space, and uncovering
of trends in their SAR. The outcome of such analyses is valuable
to guide medicinal chemistry efforts to optimize their properties
or inspire the synthesis of novel scaffolds. Molecular modeling
approaches, either ligand based or structure based, coupled with
experimental methods, constitute techniques of choice to identi-
fy putative biological properties for natural products in a system-
atic manner and thus find ways to valorize them. To this end, nu-
merous authors have applied computational structure similarity
techniques to the GRAS list compounds [19] to repurpose them
Do QT et al. How to Valorize… Planta Med 2015; 81: 436–449
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as potential functional foods or use reverse pharmacognosy to
find new uses for the molecules and their sources [18]. Although
in this review we only examine health-related aspects of natural
product utility, many applications can be found in numerous do-
mains, such as material science and energy engineering among
others.With new insights in microorganism biomes, the possibil-
ities offered by Nature become even more tremendous [12], and
preserving biodiversity has never been so crucial even at the re-
strictive economical point of view. It is anticipated that in silico
approaches will continue to be part of the research to study and
further potentiate the use of biodiversity.
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