Semin Thromb Hemost 2014; 40(08): 887-894
DOI: 10.1055/s-0034-1395159
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Contact System Activation on Endothelial Cells

Steven de Maat
1   Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
,
Philip G. de Groot
1   Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
,
Coen Maas
1   Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
› Author Affiliations
Further Information

Publication History

Publication Date:
11 November 2014 (online)

Abstract

When the contact system assembles and activates on negatively charged surface materials, plasma coagulation rapidly follows. This mechanism is redundant for hemostasis but mediates pathological thrombus formation, as was reported in a multitude of in vivo studies. The epidemiological data are presently scarce to firmly support a role for the contact system in human thrombotic disease, while its physiological function and mode of activation remains mysterious. Besides its role in blood coagulation in vitro, the contact system is responsible for the production of bradykinin. This inflammatory peptide is involved in episodes of pathological tissue swelling in (hereditary) angioedema, but potentially also in the physiological regulation of vascular permeability. A body of evidence indicates that contact system factors are recruited to the surface of activated endothelial cells, where proteins that are locally released can activate them. Furthermore, clinical and biochemical studies indicate that plasmin, the effector enzyme of the fibrinolytic system, can evoke contact system activation. This auxiliary role for plasmin may so far not have been fully appreciated in pathophysiology. To conclude this review, we propose a complementary model for contact system activation on the endothelial cell surface that is initiated by plasmin activity.

 
  • References

  • 1 Maas C, Renné T. Regulatory mechanisms of the plasma contact system. Thromb Res 2012; 129 (Suppl. 02) S73-S76
  • 2 MacFarlane RG. An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature 1964; 202: 498-499
  • 3 Davie EW, Ratnoff OD. Waterfall sequence for intrinsic blood clotting. Science 1964; 145 (3638) 1310-1312
  • 4 Naito K, Fujikawa K. Activation of human blood coagulation factor XI independent of factor XII. Factor XI is activated by thrombin and factor XIa in the presence of negatively charged surfaces. J Biol Chem 1991; 266 (12) 7353-7358
  • 5 Gailani D, Broze Jr GJ. Factor XI activation in a revised model of blood coagulation. Science 1991; 253 (5022) 909-912
  • 6 Giangrande PLF. Six characters in search of an author: the history of the nomenclature of coagulation factors. Br J Haematol 2003; 121 (5) 703-712
  • 7 Ratnoff OD, Colopy JE. A familial hemorrhagic trait associated with a deficiency of a clot-promoting fraction of plasma. J Clin Invest 1955; 34 (4) 602-613
  • 8 Renné T, Pozgajová M, Grüner S , et al. Defective thrombus formation in mice lacking coagulation factor XII. J Exp Med 2005; 202 (2) 271-281
  • 9 Bird JE, Smith PL, Wang X , et al. Effects of plasma kallikrein deficiency on haemostasis and thrombosis in mice: murine ortholog of the Fletcher trait. Thromb Haemost 2012; 107 (6) 1141-1150
  • 10 Revenko AS, Gao D, Crosby JR , et al. Selective depletion of plasma prekallikrein or coagulation factor XII inhibits thrombosis in mice without increased risk of bleeding. Blood 2011; 118 (19) 5302-5311
  • 11 Zhang H, Löwenberg EC, Crosby JR , et al. Inhibition of the intrinsic coagulation pathway factor XI by antisense oligonucleotides: a novel antithrombotic strategy with lowered bleeding risk. Blood 2010; 116 (22) 4684-4692
  • 12 Ghosh S, Shukla D, Suman K , et al. Inositol hexakisphosphate kinase 1 maintains hemostasis in mice by regulating platelet polyphosphate levels. Blood 2013; 122 (8) 1478-1486
  • 13 Jain S, Pitoc GA, Holl EK , et al. Nucleic acid scavengers inhibit thrombosis without increasing bleeding. Proc Natl Acad Sci U S A 2012; 109 (32) 12938-12943
  • 14 Müller F, Mutch NJ, Schenk WA , et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 2009; 139 (6) 1143-1156
  • 15 Kannemeier C, Shibamiya A, Nakazawa F , et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci U S A 2007; 104 (15) 6388-6393
  • 16 Doggen CJM, Rosendaal FR, Meijers JCM. Levels of intrinsic coagulation factors and the risk of myocardial infarction among men: Opposite and synergistic effects of factors XI and XII. Blood 2006; 108 (13) 4045-4051
  • 17 Endler G, Marsik C, Jilma B, Schickbauer T, Quehenberger P, Mannhalter C. Evidence of a U-shaped association between factor XII activity and overall survival. J Thromb Haemost 2007; 5 (6) 1143-1148
  • 18 Bach J, Endler G, Winkelmann BR , et al. Coagulation factor XII (FXII) activity, activated FXII, distribution of FXII C46T gene polymorphism and coronary risk. J Thromb Haemost 2008; 6 (2) 291-296
  • 19 Govers-Riemslag JWP, Smid M, Cooper JA , et al. The plasma kallikrein-kinin system and risk of cardiovascular disease in men. J Thromb Haemost 2007; 5 (9) 1896-1903
  • 20 Konings J, Govers-Riemslag JWP, Spronk HMH, Waltenberger JL, ten Cate H. Activation of the contact system in patients with a first acute myocardial infarction. Thromb Res 2013; 132 (1) 138-142
  • 21 Sheikh IA, Kaplan AP. Mechanism of digestion of bradykinin and lysylbradykinin (kallidin) in human serum. Role of carboxypeptidase, angiotensin-converting enzyme and determination of final degradation products. Biochem Pharmacol 1989; 38 (6) 993-1000
  • 22 Cyr M, Lepage Y, Blais Jr C , et al. Bradykinin and des-Arg(9)-bradykinin metabolic pathways and kinetics of activation of human plasma. Am J Physiol Heart Circ Physiol 2001; 281 (1) H275-H283
  • 23 Tsukagoshi H, Shimizu Y, Horie T , et al. Regulation by interleukin-1beta of gene expression of bradykinin B1 receptor in MH-S murine alveolar macrophage cell line. Biochem Biophys Res Commun 1999; 259 (2) 476-482
  • 24 Lee Y-J, Zachrisson O, Tonge DA, McNaughton PA. Upregulation of bradykinin B2 receptor expression by neurotrophic factors and nerve injury in mouse sensory neurons. Mol Cell Neurosci 2002; 19 (2) 186-200
  • 25 Dewald G, Bork K. Missense mutations in the coagulation factor XII (Hageman factor) gene in hereditary angioedema with normal C1 inhibitor. Biochem Biophys Res Commun 2006; 343 (4) 1286-1289
  • 26 Bork K, Wulff K, Meinke P, Wagner N, Hardt J, Witzke G. A novel mutation in the coagulation factor 12 gene in subjects with hereditary angioedema and normal C1-inhibitor. Clin Immunol 2011; 141 (1) 31-35
  • 27 Cicardi M, Banerji A, Bracho F , et al. Icatibant, a new bradykinin-receptor antagonist, in hereditary angioedema. N Engl J Med 2010; 363 (6) 532-541
  • 28 Cicardi M, Levy RJ, McNeil DL , et al. Ecallantide for the treatment of acute attacks in hereditary angioedema. N Engl J Med 2010; 363 (6) 523-531
  • 29 Nielsen EW, Johansen HT, Høgåsen K, Wuillemin W, Hack CE, Mollnes TE. Activation of the complement, coagulation, fibrinolytic and kallikrein-kinin systems during attacks of hereditary angioedema. Scand J Immunol 1996; 44 (2) 185-192
  • 30 van Geffen M, Cugno M, Lap P, Loof A, Cicardi M, van Heerde W. Alterations of coagulation and fibrinolysis in patients with angioedema due to C1-inhibitor deficiency. Clin Exp Immunol 2012; 167 (3) 472-478
  • 31 Nussberger J, Cugno M, Cicardi M, Agostoni A. Local bradykinin generation in hereditary angioedema. J Allergy Clin Immunol 1999; 104 (6) 1321-1322
  • 32 Maas C. The Protease Storm of Angioedema. Journal of Angioedema 2013; 1 (2) 18-27
  • 33 Brown NJ, Snowden M, Griffin MR. Recurrent angiotensin-converting enzyme inhibitor—associated angioedema. JAMA 1997; 278 (3) 232-233
  • 34 Puy C, Tucker EI, Wong ZC , et al. Factor XII promotes blood coagulation independent of factor XI in the presence of long-chain polyphosphates. J Thromb Haemost 2013; 11 (7) 1341-1352
  • 35 Maas C, Govers-Riemslag JWP, Bouma B , et al. Misfolded proteins activate factor XII in humans, leading to kallikrein formation without initiating coagulation. J Clin Invest 2008; 118 (9) 3208-3218
  • 36 Shibayama Y, Joseph K, Nakazawa Y, Ghebreihiwet B, Peerschke EI, Kaplan AP. Zinc-dependent activation of the plasma kinin-forming cascade by aggregated β amyloid protein. Clin Immunol 1999; 90 (1) 89-99
  • 37 Oschatz C, Maas C, Lecher B , et al. Mast cells increase vascular permeability by heparin-initiated bradykinin formation in vivo. Immunity 2011; 34 (2) 258-268
  • 38 Morrison DC, Cochrane CG. Direct evidence for Hageman factor (factor XII) activation by bacterial lipopolysaccharides (endotoxins). J Exp Med 1974; 140 (3) 797-811
  • 39 White-Adams TC, Berny MA, Patel IA , et al. Laminin promotes coagulation and thrombus formation in a factor XII-dependent manner. J Thromb Haemost 2010; 8 (6) 1295-1301
  • 40 Wilner GD, Nossel HL, LeRoy EC. Activation of Hageman factor by collagen. J Clin Invest 1968; 47 (12) 2608-2615
  • 41 van der Meijden PEJ, Munnix ICA, Auger JM , et al. Dual role of collagen in factor XII-dependent thrombus formation. Blood 2009; 114 (4) 881-890
  • 42 Schousboe I. The inositol-phospholipid-accelerated activation of prekallikrein by activated factor XII at physiological ionic strength requires zinc ions and high-Mr kininogen. Eur J Biochem 1990; 193 (2) 495-499
  • 43 Van Der Meijden PEJ, Van Schilfgaarde M, Van Oerle R, Renné T, ten Cate H, Spronk HM. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J Thromb Haemost 2012; 10 (7) 1355-1362
  • 44 Ruiz FA, Lea CR, Oldfield E, Docampo R. Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J Biol Chem 2004; 279 (43) 44250-44257
  • 45 Smith SA, Mutch NJ, Baskar D, Rohloff P, Docampo R, Morrissey JH. Polyphosphate modulates blood coagulation and fibrinolysis. Proc Natl Acad Sci U S A 2006; 103 (4) 903-908
  • 46 Choi SH, Smith SA, Morrissey JH. Polyphosphate is a cofactor for the activation of factor XI by thrombin. Blood 2011; 118 (26) 6963-6970
  • 47 Faxälv L, Boknäs N, Ström JO , et al. Putting polyphosphates to the test: evidence against platelet-induced activation of factor XII. Blood 2013; 122 (23) 3818-3824
  • 48 Nickel KF, Spronk HM, Mutch NJ, Renné T. Time-dependent degradation and tissue factor addition mask the ability of platelet polyphosphates in activating factor XII-mediated coagulation. Blood 2013; 122 (23) 3847-3849
  • 49 Kleinschnitz C, Stoll G, Bendszus M , et al. Targeting coagulation factor XII provides protection from pathological thrombosis in cerebral ischemia without interfering with hemostasis. J Exp Med 2006; 203 (3) 513-518
  • 50 van Iwaarden F, de Groot PG, Bouma BN. The binding of high molecular weight kininogen to cultured human endothelial cells. J Biol Chem 1988; 263 (10) 4698-4703
  • 51 Hasan AA, Cines DB, Herwald H, Schmaier AH, Müller-Esterl W. Mapping the cell binding site on high molecular weight kininogen domain 5. J Biol Chem 1995; 270 (33) 19256-19261
  • 52 Zini JM, Schmaier AH, Cines DB. Bradykinin regulates the expression of kininogen binding sites on endothelial cells. Blood 1993; 81 (11) 2936-2946
  • 53 Schousboe I. Rapid and cooperative binding of factor XII to human umbilical vein endothelial cells. Eur J Biochem 2001; 268 (14) 3958-3963
  • 54 Taylor SL, Wahl-Jensen V, Copeland AM, Jahrling PB, Schmaljohn CS. Endothelial cell permeability during hantavirus infection involves factor XII-dependent increased activation of the kallikrein-kinin system. PLoS Pathog 2013; 9 (7) e1003470
  • 55 Renné T, Dedio J, David G, Müller-Esterl W. High molecular weight kininogen utilizes heparan sulfate proteoglycans for accumulation on endothelial cells. J Biol Chem 2000; 275 (43) 33688-33696
  • 56 Renné T, Schuh K, Müller-Esterl W. Local bradykinin formation is controlled by glycosaminoglycans. J Immunol 2005; 175 (5) 3377-3385
  • 57 Ratnoff OD, Everson B, Embury P , et al. Inhibition of the activation of Hageman factor (factor XII) by human vascular endothelial cell culture supernates. Proc Natl Acad Sci U S A 1991; 88 (23) 10740-10743
  • 58 Joseph K, Shibayama Y, Ghebrehiwet B, Kaplan AP. Factor XII-dependent contact activation on endothelial cells and binding proteins gC1qR and cytokeratin 1. Thromb Haemost 2001; 85 (1) 119-124
  • 59 Herwald H, Dedio J, Kellner R, Loos M, Müller-Esterl W. Isolation and characterization of the kininogen-binding protein p33 from endothelial cells. Identity with the gC1q receptor. J Biol Chem 1996; 271 (22) 13040-13047
  • 60 Joseph K, Ghebrehiwet B, Peerschke EI, Reid KB, Kaplan AP. Identification of the zinc-dependent endothelial cell binding protein for high molecular weight kininogen and factor XII: identity with the receptor that binds to the globular “heads” of C1q (gC1q-R). Proc Natl Acad Sci U S A 1996; 93 (16) 8552-8557
  • 61 Ghebrehiwet B, Jesty J, Xu S , et al. Structure-function studies using deletion mutants identify domains of gC1qR/p33 as potential therapeutic targets for vascular permeability and inflammation. Front Immunol 2011; 2: 2
  • 62 Hosszu KK, Valentino A, Vinayagasundaram U , et al. DC-SIGN, C1q, and gC1qR form a trimolecular receptor complex on the surface of monocyte-derived immature dendritic cells. Blood 2012; 120 (6) 1228-1236
  • 63 Khan MM, Bradford HN, Isordia-Salas I , et al. High-molecular-weight kininogen fragments stimulate the secretion of cytokines and chemokines through uPAR, Mac-1, and gC1qR in monocytes. Arterioscler Thromb Vasc Biol 2006; 26 (10) 2260-2266
  • 64 Hasan AA, Zisman T, Schmaier AH. Identification of cytokeratin 1 as a binding protein and presentation receptor for kininogens on endothelial cells. Proc Natl Acad Sci U S A 1998; 95 (7) 3615-3620
  • 65 Shariat-Madar Z, Mahdi F, Schmaier AH. Mapping binding domains of kininogens on endothelial cell cytokeratin 1. J Biol Chem 1999; 274 (11) 7137-7145
  • 66 Kroon ME, Koolwijk P, van der Vecht B, van Hinsbergh VW. Urokinase receptor expression on human microvascular endothelial cells is increased by hypoxia: implications for capillary-like tube formation in a fibrin matrix. Blood 2000; 96 (8) 2775-2783
  • 67 Al-Atrash G, Shetty S, Idell S , et al. IL-2-mediated upregulation of uPA and uPAR in natural killer cells. Biochem Biophys Res Commun 2002; 292 (1) 184-189
  • 68 Stach K, Nguyen XD, Lang S , et al. Simvastatin and atorvastatin attenuate VCAM-1 and uPAR expression on human endothelial cells and platelet surface expression of CD40 ligand. Cardiol J 2012; 19 (1) 20-28
  • 69 Smith SA, Choi SH, Collins JNR, Travers RJ, Cooley BC, Morrissey JH. Inhibition of polyphosphate as a novel strategy for preventing thrombosis and inflammation. Blood 2012; 120 (26) 5103-5110
  • 70 Colman RW, Pixley RA, Najamunnisa S , et al. Binding of high molecular weight kininogen to human endothelial cells is mediated via a site within domains 2 and 3 of the urokinase receptor. J Clin Invest 1997; 100 (6) 1481-1487
  • 71 Mahdi F, Madar ZS, Figueroa CD, Schmaier AH. Factor XII interacts with the multiprotein assembly of urokinase plasminogen activator receptor, gC1qR, and cytokeratin 1 on endothelial cell membranes. Blood 2002; 99 (10) 3585-3596
  • 72 Mahdi F, Shariat-Madar Z, Todd III RF, Figueroa CD, Schmaier AH. Expression and colocalization of cytokeratin 1 and urokinase plasminogen activator receptor on endothelial cells. Blood 2001; 97 (8) 2342-2350
  • 73 LaRusch GA, Mahdi F, Shariat-Madar Z , et al. Factor XII stimulates ERK1/2 and Akt through uPAR, integrins, and the EGFR to initiate angiogenesis. Blood 2010; 115 (24) 5111-5120
  • 74 Guo Y-L, Colman RW. Two faces of high-molecular-weight kininogen (HK) in angiogenesis: bradykinin turns it on and cleaved HK (HKa) turns it off. J Thromb Haemost 2005; 3 (4) 670-676
  • 75 Røjkjaer R, Hasan AA, Motta G, Schousboe I, Schmaier AH. Factor XII does not initiate prekallikrein activation on endothelial cells. Thromb Haemost 1998; 80 (1) 74-81
  • 76 Joseph K, Tholanikunnel BG, Kaplan AP. Heat shock protein 90 catalyzes activation of the prekallikrein-kininogen complex in the absence of factor XII. Proc Natl Acad Sci U S A 2002; 99 (2) 896-900
  • 77 Chen B, Zhong D, Monteiro A. Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics 2006; 7: 156
  • 78 Nemoto T, Sato N, Iwanari H, Yamashita H, Takagi T. Domain structures and immunogenic regions of the 90-kDa heat-shock protein (HSP90). Probing with a library of anti-HSP90 monoclonal antibodies and limited proteolysis. J Biol Chem 1997; 272 (42) 26179-26187
  • 79 Li W, Sahu D, Tsen F. Secreted heat shock protein-90 (Hsp90) in wound healing and cancer. Biochim Biophys Acta 2012; 1823 (3) 730-741
  • 80 Joseph K, Tholanikunnel BG, Bygum A, Ghebrehiwet B, Kaplan AP. Factor XII-independent activation of the bradykinin-forming cascade: Implications for the pathogenesis of hereditary angioedema types I and II. J Allergy Clin Immunol 2013; 132 (2) 470-475
  • 81 Shariat-Madar Z, Mahdi F, Schmaier AH. Identification and characterization of prolylcarboxypeptidase as an endothelial cell prekallikrein activator. J Biol Chem 2002; 277 (20) 17962-17969
  • 82 Shariat-Madar Z, Mahdi F, Schmaier AH. Recombinant prolylcarboxypeptidase activates plasma prekallikrein. Blood 2004; 103 (12) 4554-4561
  • 83 Odya CE, Marinkovic DV, Hammon KJ, Stewart TA, Erdös EG. Purification and properties of prolylcarboxypeptidase (angiotensinase C) from human kidney. J Biol Chem 1978; 253 (17) 5927-5931
  • 84 Hooley E, McEwan PA, Emsley J. Molecular modeling of the prekallikrein structure provides insights into high-molecular-weight kininogen binding and zymogen activation. J Thromb Haemost 2007; 5 (12) 2461-2466
  • 85 Pixley RA, Schmaier A, Colman RW. Effect of negatively charged activating compounds on inactivation of factor XIIa by Cl inhibitor. Arch Biochem Biophys 1987; 256 (2) 490-498
  • 86 Ravindran S, Grys TE, Welch RA, Schapira M, Patston PA. Inhibition of plasma kallikrein by C1-inhibitor: role of endothelial cells and the amino-terminal domain of C1-inhibitor. Thromb Haemost 2004; 92 (6) 1277-1283
  • 87 Andronicos NM, Chen EI, Baik N , et al. Proteomics-based discovery of a novel, structurally unique, and developmentally regulated plasminogen receptor, Plg-RKT, a major regulator of cell surface plasminogen activation. Blood 2010; 115 (7) 1319-1330
  • 88 Hall SW, Humphries JE, Gonias SL. Inhibition of cell surface receptor-bound plasmin by alpha 2-antiplasmin and alpha 2-macroglobulin. J Biol Chem 1991; 266 (19) 12329-12336
  • 89 Ewald GA, Eisenberg PR. Plasmin-mediated activation of contact system in response to pharmacological thrombolysis. Circulation 1995; 91 (1) 28-36
  • 90 Pönitz V, Pritchard D, Grundt H, Nilsen DWT. Specific types of activated Factor XII increase following thrombolytic therapy with tenecteplase. J Thromb Thrombolysis 2006; 22 (3) 199-203
  • 91 Cugno M, Hack CE, de Boer JP, Eerenberg AJ, Agostoni A, Cicardi M. Generation of plasmin during acute attacks of hereditary angioedema. J Lab Clin Med 1993; 121 (1) 38-43
  • 92 Kluft C, Trumpi-Kalshoven MM, Jie AF, Veldhuyzen-Stolk EC. Factor XII-dependent fibrinolysis: a double function of plasma kallikrein and the occurrence of a previously undescribed factor XII- and kallikrein-dependent plasminogen proactivator. Thromb Haemost 1979; 41 (4) 756-773
  • 93 Levi M, Hack CE, de Boer JP, Brandjes DP, Büller HR, ten Cate JW. Reduction of contact activation related fibrinolytic activity in factor XII deficient patients. Further evidence for the role of the contact system in fibrinolysis in vivo. J Clin Invest 1991; 88 (4) 1155-1160
  • 94 Wintenberger C, Boccon-Gibod I, Launay D , et al. Tranexamic acid as maintenance treatment for non-histaminergic angioedema: analysis of efficacy and safety in 37 patients. Clin Exp Immunol 2014; 178 (1) 112-117
  • 95 Defendi F, Charignon D, Ghannam A , et al; National Reference Centre for Angioedema CREAK. Enzymatic assays for the diagnosis of bradykinin-dependent angioedema. PLoS ONE 2013; 8 (8) e70140
  • 96 Tersteeg C, de Maat S, De Meyer SF , et al. Plasmin cleavage of von Willebrand factor as an emergency bypass for ADAMTS13 deficiency in thrombotic microangiopathy. Circulation 2014; 129 (12) 1320-1331