Vacuum sponge therapy using the pull-through technique via a percutaneous endoscopic gastros-
tomy to treat iatrogenic duodenal perforation

Fig. 1 a Duodenal perforation with free intra-abdominal fluid and air (arrow) in a patient undergoing
argon plasma coagulation treatment for recurrent adenocarcinoma. b The inserted sponge (arrow) had
dislocated to the stomach at 24 hours after endoscopic placement in the duodenum in order to treat
the perforation shown in a.

Fig. 2 a Duodenal perforation. b Sufficiently granulated cavity at 20 days after sponge treatment.

In 2011, a 37-year old patient with a
history of familial adenomatous polyposis
underwent a subtotal colectomy and
resection of the proximal jejunum and
distal duodenum with side-to-side duode-
nojejunostomy. The procedure was
performed for adenocarcinoma of the
duodenum (pT3 pN0 L0 V0 R0 G2). In November of 2013, an endoscopically irresectable recurrent adenoma of the anastomosis was seen. Surgical resection was also impossible because of desmoids of the mesentery. Therefore, it was decided intraoperatively to resect the adenoma endoscopically in piecemeal fashion. Histology again showed adenocarcinoma (pT1 R2), and the residual carcinoma was treated at intervals of 6 months with argon plasma coagulation (APC). In June of 2015, the patient developed fever and
abdominal pain 24 hours after the last
APC therapy.

Computed tomography showed free fluid
and air adjacent to the ablation site (Fig. 1 a). Endoscopy confirmed a duodenal perforation (Fig. 2 a). Because of a lack of surgical options, an Eso-Sponge (B. Braun Melsungen AG, Melsungen,
Germany) was placed close to the perforation.
However, post-interventional computed
tomography showed that the Eso-Sponge
had dislocated to the stomach (Fig. 1 b). The risk for persistent dislocation was minimized as follows: First, with a Pexact Device II (Fresenius Kabi AG, Bad Hom-
burg, Germany), the anterior gastric wall
was sutured (four polydioxanone [PDS] sutures) before a conventional 20-Fr per-
cutaneous endoscopic gastrostomy (PEG)
catheter (Fresenius Kabi AG) was inserted
using the pull-through technique. This
procedure minimizes the risk for peritoni-
tis during frequent manipulations. A
thread was introduced through the PEG
into the stomach and drawn out orally
with a grasping forceps. The thread was
connected to the end of the Eso-Sponge
tube. Second, the Eso-Sponge device was
introduced into the stomach using the
pull-through technique, and the Eso-
Sponge tube was diverted through the
PEG. Third, intraluminally the Eso-Sponge
was positioned endoscopically close to
the duodenal perforation (Fig. 3 a, b). A negative pressure was
applied (30 mmHg).
The Eso-Sponge was changed three times
(at 4- to 6-day intervals) as follows: A gas-
tric tube was connected to the external
end of the Eso-Sponge tube. The Eso-
Sponge was grasped in the duodenum,
drawn out orally, and cut off. The end of a
new Eso-Sponge tube was connected to
the end of the transoral tube. Finally, the
sponge was drawn into the stomach by
the pull-through technique under endo-
scopic view, as described previously, and
then repositioned in the duodenum.
The patient received total parenteral nu-
trition and antibiotic treatment (cefurox-
ime/metronidazole) for 10 days. Because
of various risk factors (obesity, sleep ap-
nea, lockjaw), all procedures were per-
formed with the patient under general
anesthesia. No further sponge dislocation
occurred. At 20 days after the initiation of
treatment, the cavity appeared closed
(Fig. 2 b), and the patient was started
on solid food. The PEG was removed 7
days later.

Endoscopic vacuum therapy has been
established as an effective treatment for
perforations [1,2]; however, it must be
frequently modified in the upper gastro-
intestinal tract [3–5], and clinical experi-
ence is still limited. As shown in this case,
intraluminal vacuum therapy is a feasible
treatment option for a duodenal perfora-
tion. Because of the long distance and sev-
eral angles bridged by the sponge tube
and adherence to the endoscope during
retrieval of the device, there is a high risk
for dislocation of the sponge when it is
placed in the duodenum intraluminally
and drawn out nasally.
Use of the pull-through technique via PEG
for sponge placement and necessary
changes during treatment reduces the in-
traluminal distance of the Eso-Sponge
tube. Thus, the described method represents an easy way to prevent dislocation and so increase the chance of successful treatment.

Competing interests: None

References
4 Fischer A, Baier P, Hopt UT et al. Laparoendoscopic mediastinal vacuum therapy of a gastric perforation through the diaphragm. Endoscopy 2011; 43 (Suppl. 02) UCTN: E393–394
5 Fähndrich M, Sandmann M. A new method for endoscopic drainage of pancreatic necrosis through a gastrostomy site using an endosponge. Endoscopy 2014; 46 (Suppl. 01) UCTN: E459

Bibliography
DOI http://dx.doi.org/10.1055/s-0034-1393369
Endoscopy 2015; 47: E567–E568
© Georg Thieme Verlag KG
Stuttgart · New York
ISSN 0013-726X

Corresponding author
Hans-Jürgen Richter-Schrag, MD
Hugstetter Street 55
79106 Freiburg
Germany
Fax: 49-761-270-27750
hans-juergen.schrag@uniklinik-freiburg.de

Fig. 3 a The Eso-sponge tube passes through the percutaneous endoscopic gastrostomy. b Endoscopic placement of the sponge in the duodenum with a forceps.