Resolution of post-liver transplant anastomotic biliary stricture with successful placement of a self-expanding metallic stent in a child

A 9-year-old girl who had received an orthotopic liver transplant for cryptogenic cirrhosis at the age of 5 years was admitted for the evaluation of elevated transaminases. Transabdominal ultrasound demonstrated intrahepatic biliary dilatation. Liver biopsy ruled out organ rejection, and endoscopic retrograde cholangiopancreatography (ERCP) confirmed the presence of a focal anastomotic stricture (Fig. 1a).

The placement of two 7-Fr plastic biliary stents (Fig. 1b) resulted in a decrease in her transaminase levels. Follow-up procedures with additional balloon dilatation and the placement of multiple 10-Fr plastic stents with adequate decompression.

The persistent radial expansion force created by the metal stent appears to result in an adequate response of the ringlike focal anastomotic stricture and is the likely reason for the optimal response in our patient.

The placement of a fully covered self-expanding metal stent is a viable and safe alternative to repeated stent insertion for carefully selected patients with biliary strictures following transplant and provides an alternative to the surgical management of strictures that are refractory to standard endoscopic therapy. However, the long-term effect of metal stent placement in pediatric patients is unknown.

Overall, biliary complication rates following liver transplant vary from 12% to 50% [1], and anastomotic strictures occur in up to 10% of patients [2]. Whereas the utility of endotherapy in the adult population is well documented, data are limited for similar interventions in the cohort of pediatric patients with liver transplants [3]. The placement of a fully covered self-expanding metal stent is an emerging modality for the treatment of refractory biliary strictures following liver transplant [4]. However, there are no documented reports in pediatric patients with liver transplants.

The parents preferred a minimally invasive approach before considering surgery. In order to provide lasting relief, the placement of a 60×10-mm metal stent (Wallstent; Boston Scientific, Natick, Massachusetts, USA) was undertaken safely (Fig. 1c). ERCP after 2 months revealed resolution of the anastomotic stricture (Fig. 1d), and at clinical follow-up 6 months after stent removal, the patient had stable liver enzymes with no symptoms.

Endoscopy_UCTN_Code_TTT_1AR_2AZ

Competing interests: None

William P. Sonnier1, Devin Eckhoff2, Stephen Gray2, Jayapal Ramesh1
1 University of Alabama at Birmingham, Division of Gastroenterology-Hepatology, Birmingham, Alabama, USA
2 University of Alabama at Birmingham, Department of Liver Transplantation Surgery, Birmingham, Alabama, USA

References

Bibliography
DOI http://dx.doi.org/10.1055/s-0034-1392659
Endoscopy 2015; 47: E444–E445
© Georg Thieme Verlag KG
Stuttgart · New York
ISSN 0013-726X

Corresponding author
Jayapal Ramesh, MD, FRCP (UK), FASGE
Basil Hirschowitz Endoscopic Center of Excellence
Division of Gastroenterology-Hepatology
University of Alabama at Birmingham
BDB 389
1808 7th Avenue South
Birmingham, Alabama 35294
USA
Phone: +1-205-996-4059
Fax: +1-205-975-6381
j1ramesh@gmail.com