A 43-year-old male patient presented with obstructive jaundice. Blood samples showed total bilirubin 3.1 mg/dL, direct bilirubin 2.0 mg/dL, aspartate aminotransferase (AST) 261 U/L, alanine transaminase (ALT) 165 U/L, Coagulation, hemogram, albumin, and renal function test findings were within the normal range. Serological testing for hepatitis B and hepatitis C virus was negative. Abdominal ultrasonography and magnetic resonance imaging revealed situs inversus totalis, and a thrombosed portal vein with cavernoma, and common bile duct/common hepatic duct (CBD/CHD) obstruction.

Endoscopic retrograde cholangiopancreatography (ERCP) was performed with only minor changes to the standard technique, as highlighted in previous case reports [1,2]. Keeping the patient in the prone position (as used at our institution for ERCP in patients without situs inversus totalis), the endoscope short position was achieved by torquing the scope 180 degrees anticlockwise and the papilla was cannulated with a standard sphincterotome. The initial cholangiogram showed smooth CBD/CHD compression and a small stone within (Fig. 1). After a small biliary sphincterotomy, the biliary stone was extracted using a balloon. A sudden spurt of torrential bleeding came from the papilla, suggesting a rupture of intraductal varices (Video 1). A 6-cm biliary fully covered self-expandable metal stent (SEMS) (Boston Scientific, Natick, Massachusetts, USA) was immediately inserted, as described for bleeding from portal biliopathy in patients without situs inversus totalis (Fig. 2) [3]. Bleeding continued in spite of the biliary SEMS, and hence a 10-mm diameter controlled radial expansion balloon (CRE; Boston Scientific) was inserted into the SEMS (Video 1). The balloon was kept inflated for 2 minutes at the partially expanded upper half of SEMS (where the likely choledochal varices were located based on ERCP imaging). There was no biliary bleeding at the end of balloon decompression and its removal and for further duodenoscopic observation for next five minutes (Video 1).

However 2 days after the procedure, the patient developed fever (38 °C) with a rise in bilirubin. A repeat ERCP showed biliary obstruction due to adherent clot (Fig. 3a) and a 7-Fr 10-cm double-pigtail stent was placed within the SEMS (Fig. 3b). After 3 months the SEMS along with the plastic stent was removed. No oozing occurred after SEMS removal. Another 7-Fr 10-cm double-pigtail stent was placed because of persistent biliary stricture (Fig. 4). No adverse events were reported at the 3-month follow-up after SEMS removal.
Competing interests: None

Sundeep Lakhtakia2, Rajesh Gupta2, Domenico Galasso1, Mohan Ramchandani2, Palle Manohar Reddy2, Guduru V. Rao3, Nageshwar D. Reddy2

1 Digestive Endoscopic Unit, A. Gemelli Hospital, Università Cattolica del Sacro Cuore, Rome, Italy
2 Gastroenterology and Therapeutic Endoscopy Department, Asian Institute of Gastroenterology, Hyderabad, India
3 Surgery Department, Asian Institute of Gastroenterology, Hyderabad, India

References

Bibliography

Endoscopy 2015; 47: E335–E336
© Georg Thieme Verlag KG
Stuttgart · New York
ISSN 0013-726X

Corresponding author
Sundeep Lakhtakia, MD
Gastroenterology and Therapeutic Endoscopy Department
Asian Institute of Gastroenterology
6-3-661, Somajiguda, Hyderabad
Telangana 500082
India
Fax: +91-40-2332 4255
drsundeeplakhtakia@gmail.com

Fig. 3 a Cholangiogram 2 days after bleeding, showing filling defects (clots) occluding the biliary ducts and the self-expandable metal stent. b A plastic stent was then inserted into the metal stent.

Fig. 4 a Cholangiogram 3 months later showing persistent common hepatic duct compression after removal of metal and plastic stents. b Another plastic stent was therefore placed.