Intragastric balloon therapy is used for weight reduction as a short-term intervention in obese patients. The procedure is usually well tolerated, however, some complications including intolerance, vomiting, gastroesophageal reflux, gastric erosions and esophagitis, gastric ulcers, and spontaneous deflation of the balloon have been observed. In addition, gastric perforation, dilatation, and small-intestinal obstructions are occasionally reported [1,2]. Different types of intragastric balloons may be used for weight reduction [3]. Herein, we present three asymptomatic patients with intragastric balloons infected by Candida albicans yeast colonies.

In all three patients, a Heliosphere BAG intragastric air balloon (Helioscopie, Vienne, France) was inserted under propofol sedation for weight reduction. The balloons were removed after 6 months. We used a Heliosphere Newtech extraction kit (Helioscopie) to retrieve the balloons. The kit consists of a needle catheter to deflate and air aspirate the balloon, and a foreign body grasper to remove the balloon gently.

In the first patient, a 35-year-old woman, 126 kg in weight and with body mass index (BMI) 45.2 kg/m². During retrieval of the balloon, endoscopic findings were unremarkable, but the surface of the balloon was covered with necrotic gray-white and brownish-black plaques (Fig. 1).

In the second patient, a 45-year-old man. His weight was 127 kg and BMI was 43.9 kg/m². After 6 months, we observed, while retrieving the balloon, that it was deflated and covered in brownish-black plaques (Fig. 2 and Fig. 3).

In the third patient, a 45-year-old woman, 130 kg in weight and BMI 48.3 kg/m². Upon removal, we observed multiple yellowish-green plaques on the surface of the balloon (Fig. 4). The patients were all asymptomatic. There were no remarkable findings in the gastric mucosa of the latter two patients. Microbiological examination of these plaques revealed Candida albicans colonization (Fig. 5 and Fig. 6).

Fungal and bacterial colonization can occur on the surface of intragastric balloons. Various predisposing factors such as gastric stasis, antiacid drugs, and smoking may play a role in opportunistic infections in patients with intragastric balloons [4]. Spontaneous deflation of the balloon may be a risk factor as in the second patient discussed above. This should be taken
into consideration, especially in immuno-suppressed patients, and these patients should be monitored. If any asymptomatic balloon infection occurs, the patient should be treated, especially those with damaged gastrointestinal system mucosa.

Competing interests: None

References

Bibliography
DOI http://dx.doi.org/10.1055/s-0034-1390838
Endoscopy 2014; 46: E642–E643
© Georg Thieme Verlag KG
Stuttgart · New York
ISSN 0013-726X

Corresponding author
Şahin Çoban, MD
Department of Gastroenterology, Diskapi Yıldırım Beyazıt Education and Research Hospital, Ankara, Turkey
Fax: +90-312-3186690
scoban72@yahoo.com

Zahide Şimşek1, Oğuz Alp Gürbüz2, Şahin Çoban1
1 Department of Gastroenterology, Diskapi Yıldırım Beyazıt Education and Research Hospital, Ankara, Turkey
2 Department of Microbiology, Diskapi Yıldırım Beyazıt Education and Research Hospital, Ankara, Turkey

Fig. 5 The infected layer was wiped with a sterile swab and the material examined microscopically (×40) in a wet mount preparation. The material was inoculated onto blood agar, eosin methylene blue agar, and Sabouraud dextrose agar. After incubation for 24 hours at 37°C, small gray-white colonies grew on the blood agar. Candida albicans was identified with a BD Phoenix 100 instrument (Becton-Dickinson, Sparks, Maryland, United States).

Fig. 6 Gram staining of the plaques revealed Candida species yeast colonies. Antimicrobial susceptibility testing was performed with a Fungitest Microplate (Bio-Rad, Mames-la-Coquette, France) and Candida albicans species were detected as susceptible to miconazole, ketoconazole, amphotericin B, fluconazole, flucytosine, and itraconazole.