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Introduction
!

Currently the radiologist’s clinical practice is
generally structured as follows: if a lesion pre-
viously detected via computer tomography
(CT) or magnetic resonance imaging (MRI)
and is also monitored using ultrasound (US)
should be reevaluated or biopsied, the exami-
ner first examines the static CT or MRI data
records on an imaging console in order to
get a solid impression of the morphology and
localization of the lesion. In the subsequent
ultrasound examination, information is recal-
led from memory in order to find the lesion
and characterize it, for example. This approach
is called visual or cognitive fusion (CF).
In contrast, technical fusion (TF) allows not
only the simultaneous display of real-time ul-
trasound images with the previously obtained
CT or MRI data records on the same screen,
that is, on the split-screen ultrasound monitor,
but also supports the synchronous movement
of the real-time ultrasound image together
with the recorded 3D data records using co-
registration. In the recent past, the following
advantages, among other things, have been
ascribed to TF: Discovery of lesions that could
not be detected, or were difficult to detect
using ultrasound [1]; More reliable, non-ex-
aminer-dependent size tracking of various le-
sions [2]; Targeted biopsies of the prostate or
breast [3], which then could be performed in
private practice for example, by urologists
themselves as a first-line invasive diagnostic
procedure.
This overview article will describe the tech-
nology of TF, discuss established uses of fu-
sion imaging in uroradiology, such as prostate

Abstract
!

Technical fusion is defined as the ultrasound-
guided navigation through a previously gen-
erated 3D imaging dataset such as a compu-
ted tomography (CT) or magnetic resonance
imaging (MRI). This technique allows for
moving the fused CT/MRI datasets synchro-
neously with the real-time ultrasound in the
same plane. Established and furthermore not
yet described applications, the technical prin-
ciples and the limitations of this promising
technique will be introduced.
Key points:

▶ improves detection rates of lesions on ul-
trasound

▶ more reliable size controls at different time
points

▶ may be an alternative to in bore biopsies

▶ can be used for focal therapy
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Zusammenfassung
!

Unter technischer Fusion versteht man das ultra-
schallgeführte Navigieren durch einen zuvor
generierten 3D-Bildatensatz wie beispielsweise
einer Computertomografie (CT) oder Kernspin-
tomografie (MRT). Diese Technik erlaubt es, die
in das Ultraschallgerät eingespielten CT/MRT-
Datensätze simultan mit dem durchgeführten
Echtzeitultraschall zu bewegen, nachdem selbe
Schichtpositionen anhand bestimmter anatomi-
scher „Landmarken“ registriert wurden. In der
vorliegenden Arbeit werden etablierte, aber
auch noch nicht beschriebene Einsatzmöglich-
keiten, die Technik und die Limitationen dieser

interessantenMethode auf demGebiete der Uro-
radiologie beschrieben.
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biopsy, as well as present new, yet unestablished or uneval-
uated procedures, such as fused imaging of kidneys and the
retroperitoneal region for monitoring tumor development.
In addition, the limitations of this technology will be criti-
cally evaluated.

Technology
!

Prerequisites
The following 3 components are required to perform tech-
nical fusion: 1. An ultrasound unit with fusion software;
2. Sensors attached to the ultrasound probe; 3. A transmit-
ter generating a low magnetic field (●" Fig. 1).

Procedural steps
First the 3D image data sets are uploaded to the ultrasonic
instrument, e. g. via an external data medium such as a USB
stick or locally from the database. Next is a slice comparison
between the B image and 3D data set for the position at
which certain landmarks can be detected in bothmodalities
(e. g. bladder neck during prostate fusion) (●" Fig. 2). If the
comparison is satisfactory, the fusion mode begins.

Principle
In fusion mode, the transmitter three-dimensionally locali-
zes the position of the sensors attached to the ultrasound
probe and continuously sends their coordinates to the ul-
trasound unit. In this way the 3D data record can be moved
simultaneously with the real-time ultrasound examination
on the monitor of the ultrasound unit (●" Fig. 1). In addition,
the system transfers designated targets to the 3D data re-
cord of the examination to be fused; these targets appear
directly on the live ultrasound image.

Prostate
!

Due to the deficiencies of systematic biopsy (SB) and the
PSA value for diagnosing prostate cancer, visualization of
the prostate carcinoma (PCa) is playing an increasingly im-
portant role in diagnosis [4, 5]. In particular, MRI appears to
be a stable technology, and in contrast to transrectal ultra-
sound (TRUS), is reproducible independently of the exami-
ner [6].
Initially in the biopsy setting, in addition to systematic tis-
sue cores, targeted samples were acquired via cognitive fu-
sion of suspicious areas identified in the MRI; in such cases,
a suspected lesion in the MRI is attributed as exactly as pos-
sible to a topographical region; TRUS is then performed in
this area, and subsequently additional tissue samples are
obtained. A recently published study by Boesen et al. em-
phasized the diagnostic value of CF, even when – as in this
case – the authors had little experience with MRI-guided
biopsies [7]. Their study population consisted of 83 males
with earlier negative systematic prebiopsies who also un-
derwent both SB and an MRI-targeted biopsy using CF. Con-
sequently they achieved a total PCa detection rate of 47% for
the combined systematic biopsy and cognitive fusion ap-
proach, while CF detected an additional 13% clinically sig-
nificant cases of PCa that had eluded systematic biopsies
alone.
Therefore urologists in private practice are increasingly de-
sirous of exact localization data of MRI findings so that in
their practice they can obtain additional tissue samples
from these regions.
In order to counteract possible MRI image information loss
via CF, someworking groups started to performMRI-guided
biopsies in magnetic resonance scanners (so-called “in-
bore” biopsies) [8]. This procedure is currently reserved for
a few centers with the appropriate equipment.

Fig. 2 Because urethra, seminal vesicle or bladder neck are visible on
both MRI and ultrasound they may be used as reference points for slice
registration.

Fig. 1 Setting of fusion imaging with split screen (1 real-time TRUS on the
left and MRI data set on the right), prostate phantom 2, transmitter near
the sensors on the probe 3 and investigator 4.
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In this regard, the possibilities offered by technical fusion
are increasingly interesting, since after the MRI data sets
have been uploaded to the ultrasound device, the suspected
lesion can be biopsied by radiologists and urologists using
TRUS independently of large-scale equipment (●" Fig. 3). In
addition, TF combines the advantage of two imaging proce-
dures, real-time TRUS andMRI. However, this requires close
collaboration and communication between the urologist
and radiologist. Wysock et al. reported the comparative
advantages of TF over CF with respect to prostate biopsies:
1. TF reduces the learning curve for CF; 2. More histological
information is made available; 3. TF improves the detection
of small carcinomas [3].
An additional useful option offered by technical fusion
mode is that, in addition to ultrasound-guided selection of
the MRI-targeted lesion in the B image, reevaluation of the
suspected MRI lesion is made possible using new ultra-
sound techniques such as ultrasound elastography or con-
trast-enhanced ultrasound (CEUS) [9, 10]. Thus Brock et al.
reported improved visualization of PCa when the strengths
of MRI and ultrasound elastography can be simultaneously
combined [9]. Further, Durmus et al. were able to achieve
good focus characterization with parallel employment of a

B image, ultrasound elastography, color Doppler, CEUS and
MRI [10] (●" Fig. 4).
In general, compared with SB, the following advantages of
an MRI-guided biopsy should be emphasized: (1) Better
estimation of the actual tumor load; (2) Detects more clini-
cally significant prostate cancers; (3) Requires fewer tissue
cores for tumor verification; (4) Detects fewer indolent
prostate cancers; (5) Indicates prostate cancer in difficult
cases of localization [7, 11, 12]. Due to these advantages,
technical fusion also appears to be suitable for patients in
active surveillance [13].

Kidneys
!

Identifying renal lesions
Due to reasons of cost and radiation-reduction purposes,
frequently in cases of unclear CT or MRI findings a second-
look B image ultrasound examination (B-US) is performed
to obtain additional clarification of various lesions. For inci-
dental enhancing breast lesions in a contrast-enhanced
MRI, Nakano et al. showed that using technical fusion of
the B-US is not only more independent of the examiner,
but also that the detection rate of these lesions using TF is

Fig. 3 MRI/TRUS fusion-targeted biopsy of a can-
cer suspicious area on MRI (arrows) in an anterior
location of the prostate; histology revealed a Glea-
son 7 prostate cancer.

Fig. 4 Revaluation of a cancer-suspicious area on
MRI (arrow; left image) with ultrasound elastogra-
phy (arrow; right image); note that the area is
colour-coded blue on elastography indicating
increased tissue stiffness.
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significantly higher than for those relying on cognitive fu-
sion (83% for TF vs. 30% for CF) [1].
The same appears to apply to the discovery and characteri-
zation of indistinct renal lesions previously detected by a CT
or MRI. Thus Helck et al. were able to demonstrate that
using technical fusion provided significantly improved
identifiability of renal lesions, compared to B-US alone (2.7
±1.2 vs. 2.0 ± 1.3) [14]. Interestingly this also applies to
CEUS which in the same study likewise more reliably dis-
covered renal lesions using technical fusion (CEUS-TF). An
analysis of 29 consecutive renal lesions at our institute con-
firmed the results of the above study, whereas in our cohort
the identifiability of lesions for sole B-US was 44.8% and
86.2% for TF (p =0.002) (unpublished data).

Characterizing renal lesions
Unclear CT or MRI findings for renal lesions can result from
e. g. purely monophasic examinations (due to contrast
agent dynamics?), in the case of minimal contrast agent ab-
sorption (partial volume effect? septal enhancement?), or in
the case of the presence of hemorrhagic renal cysts in the
MRI [14–16]. If such an indistinct renal lesion has been suc-
cessfully discovered by means of the fusion mode, an ultra-
sound contrast agent can be applied to further characterize
the lesion. Due to the high sensitivity of CEUS, this technol-
ogy possesses great potential in the differentiation of solid
and cystic renal lesions, differentiating solid renal lesions
and pseudotumors as well as characterizing complex cysts
[16–23]. In their study population, Helck et al. demonstrat-
ed the superiority of CEUS-TF compared to CT/MRI exami-

nations in the characterization of renal lesions [14].●" Fig. 5
shows a patient from our cohort for whom only amonopha-
sic CTwas available, and who did not require additional ex-
aminations due to the CEUS-TF.

Radiofrequency ablation
Recently published studies of ablation of liver lesions indi-
cate that the use of technically fused radio frequency abla-
tions under real-time conditions is technical possible, safe
and efficient. Thus, in many cases, technical fusion could
be employed as alternative to CT-guided ablation [24, 25].
Unlike liver studies, there is little literature regarding fu-
sion-guided renal intervention, although study groups fol-
lowed by Ukimura and Amalou demonstrated that this is
technically feasible [26, 27].

Follow-Up
!

Size controls
In principle every 3D-reconstructible DICOM image data set
can be used for fusion imaging. This means that in addition
to CT/MRI data sets, PET-CT volumes or so-called TRUE 3D
ultrasound volumes created using fusion imaging tech-
niques could be employed. Thus Nakano et al. initially cre-
ated a US-3D data set for BI-RADS 3 lesions of the breast
which they then used for size progression controls (6, 12,
and 24 months) in fusion mode for comparison with the
real-time ultrasound image [2]. The primary diameter of
the lesions initially and after 6, 12 and 24 months was indi-

Fig. 5 CEUS-TF: high-attenuation lesion of the
kidney on monophasic CT (arrow; right image) with
absence of contrast agent uptake on CEUS (arrow;
left image); therefore cancer could be ruled out.

Fig. 6 Fusion of real-time ultrasound (left image)
and TRUE-3D-US data set generated 10 days before
(right image); follow-up shows the abscess of the
prostate with a smaller size.
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cated to be 8.2 ±4.2, 8.4 ± 4.5, 8.1 ± 4.5 and 8.3 ±5.0mm
(p=0.785). The authors concluded that using TF, BI-RADS
3 lesions could be reliably reproduced at various points of
time, independent of the examiner.
We employ US/TRUE 3D-US fused examinations for size
progression monitoring of e. g. renal lesions, prostate ab-
scesses or verified PCa for patients under active surveil-
lance.●" Fig. 6 illustrates one of our patients with a prostate
abscess for whom we initially established a US-3D volume,
and whomwe monitored 10 days later using TF.
However, technical fusion also demonstrated its value to us
for the following issues, and is therefore used routinely in
this regard.

Restaging
US/CT-TF can be used for restaging of e. g. seminoma patients
in the course of ultrasound progression monitoring months
after an initial CT scan as a supplement to a simple B image
ultrasound. This offers greater certainty in the assessment
of ambiguous changes, during the discovery of sonographi-
cally difficult to detect changes (e. g. retroperitoneal lymph
nodes), or in cases of size progression evaluation such as de-
scribed by Nakano et al. [2] (●" Fig. 7).

Additional applications
Technical fusion can prove useful for more independent
progression assessment of e. g. nephropyeloplasty (●" Fig. 8),

prostate volume and abscesses, renal trauma (●" Fig. 9), or
ureteral calculus.

Limitations
!

As a rule, the purely technical aspects of TF present no diffi-
culty after a short learning phase [2].
However, in its current state of development, TF still exhibits
a few shortcomings and imprecision. In addition to the gen-
eral limitations of ultrasound such as the presence of fat de-
posits, non-compliance or overlying bowel gas [14], the fol-
lowing difficulties are specifically related to technical fusion.
First, the majority of currently available ultrasound units
with integrated TF functionality have not been able to com-
pensate for inaccuracies resulting from breathing move-
ments or deformation of organs or body parts. Thus if a CT
or MRI of the abdomen has been generated during deep in-
spiration, it can be difficult to achieve the same breathing
position during the ultrasound examination. Additional
problems can occur during an MRI/TRUS-TF of the prostate,
since the organ is deformed as a function of the pressure ap-
plied by the TRUS probe. Further, movements of the probe
displace the prostate. Currently, these inaccuracies can be
only cognitively offset by good anatomical familiarity and
sufficient practice by the examiner. This can bemade some-
what easier on new instruments by the possibility of re-

Fig. 7 Good slice correlation between real-time
ultrasound (left image) and a 6-month-old CT data
set (right image); note that the gallbladder (yellow
arrow) and 2 hepatic cysts (white arrows) are in the
same plane.

Fig. 8 Follow-up of a UPJ stenosis surgically treat-
ed in 1999; real-time ultrasound of 2014 (left im-
age) fused with a CT data set from 2008; no loss of
parenchyma and no growth of dilatation visible.
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cording different images in various layer positions, respira-
tion positions or varying contact pressure, then accessing
them later. With respect to deformation and intracorporeal
movement of the prostate, Schilling et al. suggested apply-
ing constant contact pressure as well as multi-point regis-
tration [28]. Software which can compensate for inaccuracy
caused by e. g. organ deformation would be desirable for
genuine technical fusion after proper image recording. It
should be further considered that when using an endfire
TRUS probe, other layer angles are generated in the ultra-
sound image, in comparison with MRI depending upon the
angle of inclination [29].
Another source of TF imprecision is posed by the attach-
ment and placement of the position sensors on the distal
grip of the ultrasound probes made bymost manufacturers.
In particular, when long ultrasound probes such as the TRUS
probe (●" Fig. 10) are used, the movement areas of the end of
the transducer which generates the real-time US images
differ from the sensors coupled to the movement of the 3D
image data sets. Multi-point registration would be a means
to a solution; however, ultrasound probes with sensors al-
ready integrated into the end of transducer would be a de-
sirable improvement.
Currently it is difficult to provide an exact quantification of
registration errors/deviations in millimeters for TF, since a

wide variety of software platforms are used (rigid, elastic,
electromagnetic needle tracking) as well as biopsy types
(transperineal, transrectal), and in addition, there is insuffi-
cient published data regarding the precision of technical fu-
sion (particularly for biopsies) [30]. Pokorny et al. report
that a registration precision of 3.1mm would be required
to hit a 1 cm large lesion with 95% probability on the initial
examination [31]. Ukimura et al. achieved a deviation error
of 2.92mm as well as a success rate of 84% using a
3-dimensional elastic registration system on a prostate
phantomwith integrated tumor clusters [32].
Finally, most manufacturers offer fusion software only for
premium-segment ultrasound units, which has an indirect
effect of making technical fusion relatively expensive.

Conclusions
!

The use of technical fusion in uroradiology opens numerous
possibilities and simplifications. TF-guided biopsies and ab-
lations of the prostate, for example, are a possible alternative
to interventions guided by large-scale equipment especially
in the private urological private practice, offering examiner-
independent therapymonitoring as well as the identification
of changes difficult or impossible to detect using only B im-
age ultrasound. Affordable ultrasound units and technical
developments would be desirable.
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