Semin Respir Crit Care Med 2014; 35(04): 431-440
DOI: 10.1055/s-0034-1382155
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Ventilatory Strategies in Obstructive Lung Disease

Francisco José Parrilla
1   Intensive Care Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
,
Indalecio Morán
1   Intensive Care Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
,
Ferran Roche-Campo
1   Intensive Care Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
,
Jordi Mancebo
1   Intensive Care Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
› Author Affiliations
Further Information

Publication History

Publication Date:
11 August 2014 (online)

Abstract

Chronic obstructive pulmonary disease (COPD) is characterized by expiratory flow limitation (EFL) due to progressive airflow obstruction. The various mechanisms that cause EFL are central to understanding the physiopathology of COPD. At the end of expiration, dynamic inflation may occur due to incomplete emptying the lungs. This “extra” volume increases the alveolar pressure at the end of the expiration, resulting in auto–positive end-expiratory pressure (PEEP) or PEEPi. Acute exacerbations of COPD may result in increased airway resistance and inspiratory effort, further leading to dynamic hyperinflation. COPD exacerbations may be triggered by environmental exposures, infections (viral and bacterial), or bronchial inflammation, and may result in worsening respiratory failure requiring mechanical ventilation (MV). Acute exacerbations of COPD need to be distinguished from other events such as cardiac failure or pulmonary emboli. Strategies to treat acute respiratory failure (ARF) in COPD patients include noninvasive ventilation (NIV), pressure support ventilation, and tracheal intubation with MV. In this review, we discuss invasive and noninvasive techniques to address ARF in this patient population. When invasive MV is used, settings should be adjusted in a way that minimizes hyperinflation, while providing reasonable gas exchange, respiratory muscle rest, and proper patient–ventilator interaction. Further, weaning from MV may be difficult in these patients, and factors amenable to pharmacological correction (such as increased bronchial resistance, tracheobronchial infections, and heart failure) are to be systematically searched and treated. In selected patients, early use of NIV may hasten the process of weaning from MV and improve outcomes.

 
  • References

  • 1 Tobin MJ, Laghi F, Jubran A. Ventilatory failure, ventilator support, and ventilator weaning. Compr Physiol 2012; 2 (4) 2871-2921
  • 2 Buist AS, McBurnie MA, Vollmer WM , et al; BOLD Collaborative Research Group. International variation in the prevalence of COPD (the BOLD Study): a population-based prevalence study. Lancet 2007; 370 (9589) 741-750
  • 3 Menezes AMB, Victora CG, Perez-Padilla R ; PLATINO Team. The Platino project: methodology of a multicenter prevalence survey of chronic obstructive pulmonary disease in major Latin American cities. BMC Med Res Methodol 2004; 4: 15
  • 4 Donaldson GC, Wedzicha JA. COPD exacerbations. 1: Epidemiology. Thorax 2006; 61 (2) 164-168
  • 5 Mancebo J. Physiological rationale for ventilation of patients with obstructive diseases. In: Slutsky AS, Brochard L, , eds Mechanical Ventilation. Update in Intensive Care and Emergency Medicine. Vol. 40. Germany: Springer-Verlag Berlin and Heidelberg GmbH & Co. K; 2003: 97-112
  • 6 Kondili E, Alexopoulou C, Prinianakis G, Xirouchaki N, Georgopoulos D. Pattern of lung emptying and expiratory resistance in mechanically ventilated patients with chronic obstructive pulmonary disease. Intensive Care Med 2004; 30 (7) 1311-1318
  • 7 Rossi A, Polese G, Brandi G, Conti G. Intrinsic positive end-expiratory pressure (PEEPi). Intensive Care Med 1995; 21 (6) 522-536
  • 8 Mughal MM, Culver DA, Minai OA, Arroliga AC. Auto-positive end-expiratory pressure: mechanisms and treatment. Cleve Clin J Med 2005; 72 (9) 801-809
  • 9 Mergoni M, Rossi A. Physiopathology of acute respiratory failure in COPD and asthma [in Italian]. Minerva Anestesiol 2001; 67 (4) 198-205
  • 10 Brochard L, Mancebo J. Ventilation artificielle Principes et applications. Paris, France: Arnette-Blackwell; 1994
  • 11 Pepe PE, Marini JJ. Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction: the auto-PEEP effect. Am Rev Respir Dis 1982; 126 (1) 166-170
  • 12 Derenne JP, Fleury B, Pariente R. Acute respiratory failure of chronic obstructive pulmonary disease. Am Rev Respir Dis 1988; 138 (4) 1006-1033
  • 13 Calverley PM, Koulouris NG. Flow limitation and dynamic hyperinflation: key concepts in modern respiratory physiology. Eur Respir J 2005; 25 (1) 186-199
  • 14 Pride NB, Permutt S, Riley RL, Bromberger-Barnea B. Determinants of maximal expiratory flow from the lungs. J Appl Physiol 1967; 23 (5) 646-662
  • 15 Permutt S, Bromberger-Barnea B, Bane HN. Alveolar pressure, pulmonary venous pressure, and the vascular waterfall. Med Thorac 1962; 19: 239-260
  • 16 Petrof BJ, Legaré M, Goldberg P, Milic-Emili J, Gottfried SB. Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease. Am Rev Respir Dis 1990; 141 (2) 281-289
  • 17 Smith TC, Marini JJ. Impact of PEEP on lung mechanics and work of breathing in severe airflow obstruction. J Appl Physiol (1985) 1988; 65 (4) 1488-1499
  • 18 Marini JJ. Dynamic hyperinflation and auto-positive end-expiratory pressure: lessons learned over 30 years. Am J Respir Crit Care Med 2011; 184 (7) 756-762
  • 19 Blanch L, Bernabé F, Lucangelo U. Measurement of air trapping, intrinsic positive end-expiratory pressure, and dynamic hyperinflation in mechanically ventilated patients. Respir Care 2005; 50 (1) 110-123 , discussion 123–124
  • 20 Baigorri F, de Monte A, Blanch L , et al. Hemodynamic responses to external counterbalancing of auto-positive end-expiratory pressure in mechanically ventilated patients with chronic obstructive pulmonary disease. Crit Care Med 1994; 22 (11) 1782-1791
  • 21 Ranieri VM, Giuliani R, Cinnella G , et al. Physiologic effects of positive end-expiratory pressure in patients with chronic obstructive pulmonary disease during acute ventilatory failure and controlled mechanical ventilation. Am Rev Respir Dis 1993; 147 (1) 5-13
  • 22 Marini JJ. Should PEEP be used in airflow obstruction?. Am Rev Respir Dis 1989; 140 (1) 1-3
  • 23 Ball P. Epidemiology and treatment of chronic bronchitis and its exacerbations. Chest 1995; 108 (2, Suppl): 43S-52S
  • 24 Sunyer J, Sáez M, Murillo C, Castellsague J, Martínez F, Antó JM. Air pollution and emergency room admissions for chronic obstructive pulmonary disease: a 5-year study. Am J Epidemiol 1993; 137 (7) 701-705
  • 25 Sapey E, Stockley RA. COPD exacerbations. 2: aetiology. Thorax 2006; 61 (3) 250-258
  • 26 Connors Jr AF, Dawson NV, Thomas C , et al. Outcomes following acute exacerbation of severe chronic obstructive lung disease. The SUPPORT investigators (Study to Understand Prognoses and Preferences for Outcomes and Risks of Treatments). Am J Respir Crit Care Med 1996; 154 (4 Pt 1) 959-967
  • 27 Pela R, Marchesani F, Agostinelli C , et al. Airways microbial flora in COPD patients in stable clinical conditions and during exacerbations: a bronchoscopic investigation. Monaldi Arch Chest Dis 1998; 53 (3) 262-267
  • 28 Soler N, Torres A, Ewig S , et al. Bronchial microbial patterns in severe exacerbations of chronic obstructive pulmonary disease (COPD) requiring mechanical ventilation. Am J Respir Crit Care Med 1998; 157 (5 Pt 1) 1498-1505
  • 29 Bogaert D, van der Valk P, Ramdin R , et al. Host-pathogen interaction during pneumococcal infection in patients with chronic obstructive pulmonary disease. Infect Immun 2004; 72 (2) 818-823
  • 30 Albert RK, Connett J, Bailey WC , et al; COPD Clinical Research Network. Azithromycin for prevention of exacerbations of COPD. N Engl J Med 2011; 365 (8) 689-698
  • 31 Beckham JD, Cadena A, Lin J , et al. Respiratory viral infections in patients with chronic, obstructive pulmonary disease. J Infect 2005; 50 (4) 322-330
  • 32 Meloni F, Paschetto E, Mangiarotti P , et al. Acute Chlamydia pneumoniae and Mycoplasma pneumoniae infections in community-acquired pneumonia and exacerbations of COPD or asthma: therapeutic considerations. J Chemother 2004; 16 (1) 70-76
  • 33 Lieberman D, Lieberman D, Ben-Yaakov M , et al. Infectious etiologies in acute exacerbation of COPD. Diagn Microbiol Infect Dis 2001; 40 (3) 95-102
  • 34 Beaty CD, Grayston JT, Wang SP, Kuo CC, Reto CS, Martin TR. Chlamydia pneumoniae, strain TWAR, infection in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 1991; 144 (6) 1408-1410
  • 35 McCullough PA, Hollander JE, Nowak RM , et al; BNP Multinational Study Investigators. Uncovering heart failure in patients with a history of pulmonary disease: rationale for the early use of B-type natriuretic peptide in the emergency department. Acad Emerg Med 2003; 10 (3) 198-204
  • 36 Abroug F, Ouanes-Besbes L, Nciri N , et al. Association of left-heart dysfunction with severe exacerbation of chronic obstructive pulmonary disease: diagnostic performance of cardiac biomarkers. Am J Respir Crit Care Med 2006; 174 (9) 990-996
  • 37 Cabanes LR, Weber SN, Matran R , et al. Bronchial hyperresponsiveness to methacholine in patients with impaired left ventricular function. N Engl J Med 1989; 320 (20) 1317-1322
  • 38 Rutten FH, Cramer MJ, Grobbee DE , et al. Unrecognized heart failure in elderly patients with stable chronic obstructive pulmonary disease. Eur Heart J 2005; 26 (18) 1887-1894
  • 39 Papi A, Luppi F, Franco F, Fabbri LM. Pathophysiology of exacerbations of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2006; 3 (3) 245-251
  • 40 Celli BR, Barnes PJ. Exacerbations of chronic obstructive pulmonary disease. Eur Respir J 2007; 29 (6) 1224-1238
  • 41 Chang CL, Robinson SC, Mills GD , et al. Biochemical markers of cardiac dysfunction predict mortality in acute exacerbations of COPD. Thorax 2011; 66 (9) 764-768
  • 42 MacIntyre N, Huang YC. Acute exacerbations and respiratory failure in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2008; 5 (4) 530-535
  • 43 Hawkins NM, Petrie MC, Jhund PS, Chalmers GW, Dunn FG, McMurray JJ. Heart failure and chronic obstructive pulmonary disease: diagnostic pitfalls and epidemiology. Eur J Heart Fail 2009; 11 (2) 130-139
  • 44 Hannink JD, van Helvoort HA, Dekhuijzen PN, Heijdra YF. Heart failure and COPD: partners in crime?. Respirology 2010; 15 (6) 895-901
  • 45 Rutten FH, Moons KG, Cramer MJ , et al. Recognising heart failure in elderly patients with stable chronic obstructive pulmonary disease in primary care: cross sectional diagnostic study. BMJ 2005; 331 (7529) 1379-1382
  • 46 Rutten FH, Cramer MJ, Lammers JW, Grobbee DE, Hoes AW. Heart failure and chronic obstructive pulmonary disease: An ignored combination?. Eur J Heart Fail 2006; 8 (7) 706-711
  • 47 Recio-Iglesias J, Grau-Amorós J, Formiga F, Camafort-Babkowski M, Trullàs-Vila JC, Rodríguez A ; en nombre de los investigadores del Grupo para el Estudio y Significado de la Anemia en la Insuficiencia Cardíaca (GESAIC). Chronic obstructive pulmonary disease on inpatients with heart failure. GESAIC study results [in Spanish]. Med Clin (Barc) 2010; 134 (10) 427-432
  • 48 Mentz RJ, Fiuzat M, Wojdyla DM , et al. Clinical characteristics and outcomes of hospitalized heart failure patients with systolic dysfunction and chronic obstructive pulmonary disease: findings from OPTIMIZE-HF. Eur J Heart Fail 2012; 14 (4) 395-403
  • 49 Boudestein LC, Rutten FH, Cramer MJ, Lammers JW, Hoes AW. The impact of concurrent heart failure on prognosis in patients with chronic obstructive pulmonary disease. Eur J Heart Fail 2009; 11 (12) 1182-1188
  • 50 Freixa X, Portillo K, Paré C , et al; PAC-COPD Study Investigators. Echocardiographic abnormalities in patients with COPD at their first hospital admission. Eur Respir J 2013; 41 (4) 784-791
  • 51 Barberà JA, Blanco I. Pulmonary hypertension in patients with chronic obstructive pulmonary disease: advances in pathophysiology and management. Drugs 2009; 69 (9) 1153-1171
  • 52 Van Eeden S, Leipsic J, Paul Man SF, Sin DD. The relationship between lung inflammation and cardiovascular disease. Am J Respir Crit Care Med 2012; 186 (1) 11-16
  • 53 Magder S. The left heart can only be as good as the right heart: determinants of function and dysfunction of the right ventricle. Crit Care Resusc 2007; 9 (4) 344-351
  • 54 Anderson HR, Spix C, Medina S , et al. Air pollution and daily admissions for chronic obstructive pulmonary disease in 6 European cities: results from the APHEA project. Eur Respir J 1997; 10 (5) 1064-1071
  • 55 Dockery DW, Pope III CA, Xu X , et al. An association between air pollution and mortality in six U.S. cities. N Engl J Med 1993; 329 (24) 1753-1759
  • 56 MacNee W, Donaldson K. Exacerbations of COPD: environmental mechanisms. Chest 2000; 117 (5) (Suppl. 02) 390S-397S
  • 57 Pope III CA, Kanner RE. Acute effects of PM10 pollution on pulmonary function of smokers with mild to moderate chronic obstructive pulmonary disease. Am Rev Respir Dis 1993; 147 (6 Pt 1) 1336-1340
  • 58 Gladwin MT, Pierson DJ. Mechanical ventilation of the patient with severe chronic obstructive pulmonary disease. Intensive Care Med 1998; 24 (9) 898-910
  • 59 Lightowler JV, Wedzicha JA, Elliott MW, Ram FS. Non-invasive positive pressure ventilation to treat respiratory failure resulting from exacerbations of chronic obstructive pulmonary disease: Cochrane systematic review and meta-analysis. BMJ 2003; 326 (7382) 185
  • 60 Peter JV, Moran JL, Phillips-Hughes J, Warn D. Noninvasive ventilation in acute respiratory failure—a meta-analysis update. Crit Care Med 2002; 30 (3) 555-562
  • 61 Keenan SP, Sinuff T, Cook DJ, Hill NS. Which patients with acute exacerbation of chronic obstructive pulmonary disease benefit from noninvasive positive-pressure ventilation? A systematic review of the literature. Ann Intern Med 2003; 138 (11) 861-870
  • 62 Ram FS, Picot J, Lightowler J, Wedzicha JA. Non-invasive positive pressure ventilation for treatment of respiratory failure due to exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2004; (3) CD004104
  • 63 Girault C, Richard JC, Chevron V , et al. Comparative physiologic effects of noninvasive assist-control and pressure support ventilation in acute hypercapnic respiratory failure. Chest 1997; 111 (6) 1639-1648
  • 64 Brochard L. Noninvasive pressure support ventilation: physiological and clinical results in patients with COPD and acute respiratory failure. Monaldi Arch Chest Dis 1997; 52 (1) 64-67
  • 65 Vitacca M, Lanini B, Nava S , et al. Inspiratory muscle workload due to dynamic intrinsic PEEP in stable COPD patients: effects of two different settings of non-invasive pressure-support ventilation. Monaldi Arch Chest Dis 2004; 61 (2) 81-85
  • 66 Tobin M. Principles and Practice of Mechanical Ventilation. 2nd ed. Mechanical Ventilation in Chronic Obstructive Pulmonary Disease. New York: McGraw-Hill; 2006. :Chapter 31; 663-678
  • 67 Ambrosino N, Vagheggini G. Noninvasive positive pressure ventilation in the acute care setting: where are we?. Eur Respir J 2008; 31 (4) 874-886
  • 68 Plant PK, Owen JL, Elliott MW. Non-invasive ventilation in acute exacerbations of chronic obstructive pulmonary disease: long term survival and predictors of in-hospital outcome. Thorax 2001; 56 (9) 708-712
  • 69 Kimball WR, Leith DE, Robins AG. Dynamic hyperinflation and ventilator dependence in chronic obstructive pulmonary disease. Am Rev Respir Dis 1982; 126 (6) 991-995
  • 70 Mancebo J. Assist-control ventilation. In: Tobin MJ, , ed. Principles and Practice of Mechanical Ventilation, 3rd ed. New York: McGraw-Hill; 2012: 159-174
  • 71 Tuxen DV, Lane S. The effects of ventilatory pattern on hyperinflation, airway pressures, and circulation in mechanical ventilation of patients with severe air-flow obstruction. Am Rev Respir Dis 1987; 136 (4) 872-879
  • 72 Georgopoulos D, Giannouli E, Patakas D. Effects of extrinsic positive end-expiratory pressure on mechanically ventilated patients with chronic obstructive pulmonary disease and dynamic hyperinflation. Intensive Care Med 1993; 19 (4) 197-203
  • 73 Mancebo J, Albaladejo P, Touchard D , et al. Airway occlusion pressure to titrate positive end-expiratory pressure in patients with dynamic hyperinflation. Anesthesiology 2000; 93 (1) 81-90
  • 74 Appendini L, Patessio A, Zanaboni S , et al. Physiologic effects of positive end-expiratory pressure and mask pressure support during exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1994; 149 (5) 1069-1076
  • 75 Laghi F, Segal J, Choe WK, Tobin MJ. Effect of imposed inflation time on respiratory frequency and hyperinflation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001; 163 (6) 1365-1370
  • 76 Ricard JD, Le Mière E, Markowicz P , et al. Efficiency and safety of mechanical ventilation with a heat and moisture exchanger changed only once a week. Am J Respir Crit Care Med 2000; 161 (1) 104-109
  • 77 Branson RD. Humidification of respired gases during mechanical ventilation: mechanical considerations. Respir Care Clin N Am 2006; 12 (2) 253-261
  • 78 Restrepo RD, Walsh BK ; American Association for Respiratory Care. Humidification during invasive and noninvasive mechanical ventilation: 2012. Respir Care 2012; 57 (5) 782-788
  • 79 Pelosi P, Solca M, Ravagnan I, Tubiolo D, Ferrario L, Gattinoni L. Effects of heat and moisture exchangers on minute ventilation, ventilatory drive, and work of breathing during pressure-support ventilation in acute respiratory failure. Crit Care Med 1996; 24 (7) 1184-1188
  • 80 Iotti GA, Olivei MC, Palo A , et al. Unfavorable mechanical effects of heat and moisture exchangers in ventilated patients. Intensive Care Med 1997; 23 (4) 399-405
  • 81 Girault C, Breton L, Richard JC , et al. Mechanical effects of airway humidification devices in difficult to wean patients. Crit Care Med 2003; 31 (5) 1306-1311
  • 82 Jubran A, Van de Graaff WB, Tobin MJ. Variability of patient-ventilator interaction with pressure support ventilation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1995; 152 (1) 129-136
  • 83 Thille AW, Cabello B, Galia F, Lyazidi A, Brochard L. Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med 2008; 34 (8) 1477-1486
  • 84 Deye N, Lellouche F, Maggiore SM , et al. The semi-seated position slightly reduces the effort to breathe during difficult weaning. Intensive Care Med 2013; 39 (1) 85-92
  • 85 Sinderby C, Beck J. Proportional assist ventilation and neurally adjusted ventilatory assist—better approaches to patient ventilator synchrony?. Clin Chest Med 2008; 29 (2) 329-342 , vii
  • 86 Younes M. Proportional assist ventilation, a new approach to ventilatory support. Theory. Am Rev Respir Dis 1992; 145 (1) 114-120
  • 87 Sinderby C, Navalesi P, Beck J , et al. Neural control of mechanical ventilation in respiratory failure. Nat Med 1999; 5 (12) 1433-1436
  • 88 Younes M, Kun J, Masiowski B, Webster K, Roberts D. A method for noninvasive determination of inspiratory resistance during proportional assist ventilation. Am J Respir Crit Care Med 2001; 163 (4) 829-839
  • 89 Kacmarek RM. Proportional assist ventilation and neurally adjusted ventilatory assist. Respir Care 2011; 56 (2) 140-148 , discussion 149–152
  • 90 Ranieri VM, Grasso S, Mascia L , et al. Effects of proportional assist ventilation on inspiratory muscle effort in patients with chronic obstructive pulmonary disease and acute respiratory failure. Anesthesiology 1997; 86 (1) 79-91
  • 91 Spahija J, de Marchie M, Albert M , et al. Patient-ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med 2010; 38 (2) 518-526
  • 92 Piquilloud L, Vignaux L, Bialais E , et al. Neurally adjusted ventilatory assist improves patient-ventilator interaction. Intensive Care Med 2011; 37 (2) 263-271
  • 93 Boles JM, Bion J, Connors A , et al. Weaning from mechanical ventilation. Eur Respir J 2007; 29 (5) 1033-1056
  • 94 Jubran A, Tobin MJ. Pathophysiologic basis of acute respiratory distress in patients who fail a trial of weaning from mechanical ventilation. Am J Respir Crit Care Med 1997; 155 (3) 906-915
  • 95 Lamia B, Maizel J, Ochagavia A , et al. Echocardiographic diagnosis of pulmonary artery occlusion pressure elevation during weaning from mechanical ventilation. Crit Care Med 2009; 37 (5) 1696-1701
  • 96 Grasso S, Leone A, De Michele M , et al. Use of N-terminal pro-brain natriuretic peptide to detect acute cardiac dysfunction during weaning failure in difficult-to-wean patients with chronic obstructive pulmonary disease. Crit Care Med 2007; 35 (1) 96-105
  • 97 Pinsky MR. Breathing as exercise: the cardiovascular response to weaning from mechanical ventilation. Intensive Care Med 2000; 26 (9) 1164-1166
  • 98 Frutos-Vivar F, Ferguson ND, Esteban A , et al. Risk factors for extubation failure in patients following a successful spontaneous breathing trial. Chest 2006; 130 (6) 1664-1671
  • 99 Mekontso-Dessap A, de Prost N, Girou E , et al. B-type natriuretic peptide and weaning from mechanical ventilation. Intensive Care Med 2006; 32 (10) 1529-1536
  • 100 Mekontso Dessap A, Roche-Campo F, Kouatchet A , et al. Natriuretic peptide-driven fluid management during ventilator weaning: a randomized controlled trial. Am J Respir Crit Care Med 2012; 186 (12) 1256-1263
  • 101 Tobin MJ, Laghi F, Brochard L. Role of the respiratory muscles in acute respiratory failure of COPD: lessons from weaning failure. J Appl Physiol (1985) 2009; 107 (3) 962-970
  • 102 Routsi C, Stanopoulos I, Zakynthinos E , et al. Nitroglycerin can facilitate weaning of difficult-to-wean chronic obstructive pulmonary disease patients: a prospective interventional non-randomized study. Crit Care 2010; 14 (6) R204
  • 103 Cabello B, Thille AW, Roche-Campo F, Brochard L, Gómez FJ, Mancebo J. Physiological comparison of three spontaneous breathing trials in difficult-to-wean patients. Intensive Care Med 2010; 36 (7) 1171-1179
  • 104 Ferrer M, Valencia M, Nicolas JM, Bernadich O, Badia JR, Torres A. Early noninvasive ventilation averts extubation failure in patients at risk: a randomized trial. Am J Respir Crit Care Med 2006; 173 (2) 164-170
  • 105 Nava S, Gregoretti C, Fanfulla F , et al. Noninvasive ventilation to prevent respiratory failure after extubation in high-risk patients. Crit Care Med 2005; 33 (11) 2465-2470
  • 106 Ferrer M, Esquinas A, Arancibia F , et al. Noninvasive ventilation during persistent weaning failure: a randomized controlled trial. Am J Respir Crit Care Med 2003; 168 (1) 70-76
  • 107 Ferrer M, Sellarés J, Valencia M , et al. Non-invasive ventilation after extubation in hypercapnic patients with chronic respiratory disorders: randomised controlled trial. Lancet 2009; 374 (9695) 1082-1088
  • 108 Girault C, Bubenheim M, Abroug F , et al; VENISE Trial Group. Noninvasive ventilation and weaning in patients with chronic hypercapnic respiratory failure: a randomized multicenter trial. Am J Respir Crit Care Med 2011; 184 (6) 672-679
  • 109 Jubran A, Grant BJ, Duffner LA , et al. Effect of pressure support vs unassisted breathing through a tracheostomy collar on weaning duration in patients requiring prolonged mechanical ventilation: a randomized trial. JAMA 2013; 309 (7) 671-677
  • 110 Kluge S, Braune SA, Engel M , et al. Avoiding invasive mechanical ventilation by extracorporeal carbon dioxide removal in patients failing noninvasive ventilation. Intensive Care Med 2012; 38 (10) 1632-1639
  • 111 Burki NK, Mani RK, Herth FJ , et al. A novel extracorporeal CO(2) removal system: results of a pilot study of hypercapnic respiratory failure in patients with COPD. Chest 2013; 143 (3) 678-686