Introduction

*p*-Toluenesulfonyl azide (TsN₃, CAS: 941-55-9) can be prepared in good yield from the reaction of *p*-toluenesulfonyl chloride (TsCl) and sodium azide (NaN₃) (Scheme 1).¹ TsN₃ is a colorless oil with a melting point of 21–22 °C and boiling point of 110–115 °C at 0.001mmHg.²

Table 1 Use of TsN₃

(A) Based on computational and mechanistic studies of copper-catalyzed azide–alkyne cycloaddition (CuAAC), Chang and co-workers⁵ have reported the regioselective synthesis of a series of N-sulfonyl-1,2,3-triazoles. Cul was employed as catalyst and 2,6-lutidine as an additive. N-Sulfonyl-1,2,3-triazoles were synthesized in 57–95% yield.

(B) Zhang and co-workers⁶ reported the use of iron porpholactones as catalysts for the aziridination of alkenes and for the amidation of alkanes. In the aziridination of alkenes, mainly styrene derivatives were utilized as substrates. TsN₃ acted as the nitrogen source. The authors synthesized a series of aziridines in 20–89% yield.

(C) The application of α-diazo-N-sulfonyl-imines as intermediates has often been reported.⁷ In 2013, Schultz and Sarpong⁸ performed the synthesis of 3,4-fused pyrroles using TsN₃ in the formation of α-Rh-imino-carbenoid as an intermediate by the reaction of α-diazo-N-tosyl-imines and a rhodium catalyst. In an one-pot methodology, the authors synthesized a series of 3,4-fused pyrroles in 47–92% yield.
(D) Collins et al. reported the application of TsN₃ as a reagent in the synthesis of α-diazo-β-oxo-sulfoxides by a diazo-transfer reaction. In this work, the authors utilized sulfoxides containing monocyclic, bicyclic, or acyclic lactones and lactams. A series of α-diazo-β-oxo-sulfoxides were synthesized in 10–62% yield.

(E) Lee and Xia have reported the regioselective synthesis of a series of functionalized furans from a reaction of terminal alkynes and cyclic or acyclic diazocarbonyl compounds. The authors utilized TsN₃ in a diazo-transfer reaction, furnishing diazocarbonyl compounds in 86–94% yield. The products were utilized in the synthesis of functionalized furans in 29–89% yield by a ruthenium-catalyzed [3+2] cycloaddition.

(F) C–H bond activation is versatility and has been widely applied in organic synthesis for the formation of functionalized bonds. In 2014, Chang and Kim reported the iridium-catalyzed amidation of C–H bonds in α-aryl or α,β-unsaturated carbonyl compounds (esters or ketones). The authors propose that TsN₃ allows the formation of the C–N bond by insertion of the amide group, followed by the extrusion of molecular nitrogen. In this work, more than 20 products of C–H insertion were synthesized in 51–99% yield.

(G) Kanai and co-workers reported the directed selective amidation of C–2 carbons on an indole nucleus by C–H bond activation. The authors utilized an in situ generated cobalt catalyst for the transformation. TsN₃ was employed as the reagent for the insertion of N-tosyl into the C–2 carbon, furnishing the products in 85–92% yield.

(H) Yavari and co-workers synthesized a series of pentasubstituted pyridines with good yields (69–85%).

References