Synlett 2015; 26(12): 1715-1719
DOI: 10.1055/s-0034-1380747
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Regioselective Hydroalkylation of 2-Fluoroallyl Acetates: Synthesis of Vinylmalonic Acid Ester Derivatives

Shihori Kuki
Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan   Email: kawatsur@chs.nihon-u.ac.jp
,
Takashi Futamura
Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan   Email: kawatsur@chs.nihon-u.ac.jp
,
Ryo Suzuki
Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan   Email: kawatsur@chs.nihon-u.ac.jp
,
Mitsuaki Yamamoto
Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan   Email: kawatsur@chs.nihon-u.ac.jp
,
Maki Minakawa
Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan   Email: kawatsur@chs.nihon-u.ac.jp
,
Motoi Kawatsura*
Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan   Email: kawatsur@chs.nihon-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 01 April 2015

Accepted after revision: 16 April 2015

Publication Date:
21 May 2015 (online)


Abstract

The palladium-catalyzed hydroalkylation of 2-fluoroallyl acetates with the malonate anion and hydride was developed. The reaction proceeded through the C–F bond activation and provided vinylmalonic acid ester derivatives by the regioselective substitutions with the carbon nucleophile and hydride.

Supporting Information

 
  • References and Notes

    • 1a Trost BM, Lee C In Catalytic Asymmetric Synthesis . Ojima I. Wiley-VCH; New York: 2000. 2nd ed. 593
    • 1b Tsuji J. Palladium Reagents and Catalysts: New Perspectives for the 21th Century. Wiley; Chichester: 2004: 431
    • 1c Hartwig JF. Organotransition Metal Chemistry: From Bonding to Catalysis . University Science Books; Sausalito (CA, USA): 2010: 967
    • 2a Trost BM, Van Vranken DL. Chem. Rev. 1996; 96: 395
    • 2b Johannsen M, Jørgensen KA. Chem. Rev. 1998; 98: 1689
    • 2c Hayashi T. J. Organomet. Chem. 1999; 576: 195
    • 2d Helmchen G, Pfaltz A. Acc. Chem. Res. 2000; 33: 336
    • 2e Dai L.-X, Tu T, You S.-L, Deng W.-P, Hou X.-L. Acc. Chem. Res. 2003; 36: 659
    • 2f Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
    • 2g Trost BM. J. Org. Chem. 2004; 69: 5813
    • 2h Trost BM, Machacek MR, Aponick A. Acc. Chem. Res. 2006; 39: 747
    • 2i Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
    • 2j Diéguez M, Pàmies O. Acc. Chem. Res. 2010; 43: 312
    • 3a Hegedus LS, Darlington WH, Russell CE. J. Org. Chem. 1980; 45: 5193
    • 3b Hoffmann HM. R, Otte AR, Wilde A. Angew. Chem., Int. Ed. Engl. 1992; 31: 234
    • 3c Wilde A, Otte AR, Hoffmann HM. R. J. Chem. Soc., Chem. Commun. 1993; 615
    • 3d Otte AR, Wilde A, Hoffmann HM. R. Angew. Chem., Int. Ed. Engl. 1994; 33: 1280
    • 3e Hoffmann HM. R, Otte AR, Wilde A, Menzer S, Williams DJ. Angew. Chem., Int. Ed. Engl. 1995; 34: 100
    • 3f Carfagna C, Galarini R, Musco A, Santi R. J. Mol. Catal. 1992; 72: 19
    • 3g Carfagna C, Mariani L, Musco A, Sallese G, Santi R. J. Org. Chem. 1991; 56: 3924
    • 3h Formica M, Musco A, Pontellini R, Linn K, Mealli C. J. Organomet. Chem. 1993; 448: C6
    • 3i Satake A, Nakata T. J. Am. Chem. Soc. 1998; 120: 10391
    • 3j Satake A, Koshino H, Nakata T. Chem. Lett. 1999; 49
    • 3k Grigg R, Kordes M. Eur. J. Org. Chem. 2001; 707
    • 3l Shintani R, Park S, Hayashi T. J. Am. Chem. Soc. 2007; 129: 14866
    • 3m Liu W, Chen D, Zhu X.-Z, Wan X.-L, Hou X.-L. J. Am. Chem. Soc. 2009; 131: 8734
    • 4a Castaño AM, Aranyos A, Szabó KJ, Bäckvall J.-E. Angew. Chem., Int. Ed. Engl. 1995; 34: 2551
    • 4b Aranyos A, Szabó KJ, Castaño AM, Bäckvall J.-E. Organometallics 1997; 16: 1058
    • 5a Organ MG, Miller M. Tetrahedron Lett. 1997; 38: 8181
    • 5b Organ MG, Miller M, Konstantinou Z. J. Am. Chem. Soc. 1998; 120: 9283
    • 5c Organ MG, Arvanitis EA, Hynes SJ. Tetrahedron Lett. 2002; 43: 8989
    • 5d Organ MG, Arvanitis EA, Hynes SJ. J. Org. Chem. 2003; 68: 3918
  • 6 Kadota J, Katsuragi H, Fukumoto Y, Murai S. Organometallics 2000; 19: 979
    • 7a Yamamoto M, Hayashi S, Isa K, Kawatsura M. Org. Lett. 2014; 16: 700
    • 7b Nomada E, Watanabe H, Yamamoto M, Udagawa T, Zhou B, Kobayashi A, Minakawa M, Kawatsura M. Synlett 2014; 25: 1725
  • 8 The olefin geometry of the major isomer was determined to be Z by the NOESY spectra. Please see the Supporting Information for details.
  • 9 We also examined the reaction by Pd2(dba)3, Pd(OAc)2, or Pd(acac)2 with bpy, but those reactions resulted in lower or similar yields (<2–62%) with 31–60% Z selectivity.
  • 10 Typical Procedure for the Hydroalkylation of 2-Fluoroallyl Acetates 1 with 3 and 4 To a solution of [Pd(π-allyl)Cl]2 (4.7 mg, 0.013 mmol), 2,2′-bipyridyl (4.0 mg, 0.026 mmol), silver trifluoromethanesulfonate (6.6 mg 0.026 mmol), and (Z)-2-fluoro-3-phenylallyl acetate (1a, 50 mg, 0.26 mmol) in dioxane–DCE (1:1, 1.4 mL) was added dimethyl malonate (3a, 102 mg, 0.77 mmol) and triethylsilane (4, 60 mg 0.51 mmol), then LiHMDS (0.72 mmol, 0.7 mL of 1.0 M in THF) was also added slowly at 0 °C. The reaction mixture was heated at 60 °C and stirred for 12 h, then quenched with 2 M HCl, and extracted with Et2O. The combined organic layers were dried over MgSO4 and concentrated in vacuo. The Z/E ratio was determined to be 92:8 by 1H NMR for the crude materials. The residue was chromatographed on silica gel (hexane–EtOAc, 4:1) to give 54 mg (83%) of 5aa as a colorless oil. 1H NMR (400 MHz, CDCl3): δ = 2.04 (d, J = 1.4 Hz, 3 H), 3.76 (s, 6 H), 4.71 (s, 1 H), 6.67 (s, 1 H), 7.19 (d, J = 6.8 Hz, 2 H) 7.28–7.36 (m, 3 H). Selected 1H NMR data of minor isomer (E)-5aa: δ = 2.01 (d, J = 1.4 Hz, 3 H), 3.78 (s, 6 H), 4.27 (s, 1 H), 6.48 (s, 1 H), aromatic region overlaps with major isomer. 13C NMR (125 MHz, CDCl3): δ = 21.0, 52.5, 53.5, 127.0, 128.4, 128.5, 130.0, 132.0, 136.7, 168.5. IR (neat): 3468, 3057, 3024, 2954, 2844, 1738 cm–1. HRMS (DART): m/z calcd for C14H17O4 [M + H]+: 249.1121; found: 249.1118.
  • 11 We confirmed that the reaction of (E)-5aa (minor isomer) with NaH and MeI in THF at r.t. provided (E)-5ae.
    • 12a Hayashi T, Kawatsura M, Iwamura H, Yamaura Y, Uozumi Y. Chem. Commun. 1996; 1767
    • 12b Kawatsura M, Uozumi Y, Ogasawara M, Hayashi T. Tetrahedron 2000; 56: 2247
  • 13 The exact stereochemistry had not been determined, and it was estimated by comparison with (Z)-5.
  • 14 The stereochemistry of the major isomer was determined to be E by the NOESY spectra. See the Supporting Information for details.
  • 15 The reaction using HSiEt3 and AgOTf also provided the desired product (E)-12, but the reproducibility was low (0–72% yield).