Synlett 2015; 26(09): 1145-1152
DOI: 10.1055/s-0034-1380458
synpacts
© Georg Thieme Verlag Stuttgart · New York

Catalytic Synthesis of π-Conjugated Silole through Si–C (sp3) Bond Activation

Qing-Wei Zhang
School of Medicine and Tsinghua-Peking Joint Centers for Life Science, Tsinghua University, Beijing 100084, P. R. of China   Email: whe@mail.tsinghua.edu.cn
,
Kun An
School of Medicine and Tsinghua-Peking Joint Centers for Life Science, Tsinghua University, Beijing 100084, P. R. of China   Email: whe@mail.tsinghua.edu.cn
,
Wei He*
School of Medicine and Tsinghua-Peking Joint Centers for Life Science, Tsinghua University, Beijing 100084, P. R. of China   Email: whe@mail.tsinghua.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 21 December 2014

Accepted after revision: 20 January 2015

Publication Date:
04 March 2015 (online)


Abstract

Conjugated siloles represent an important class of photoluminescence material. Traditional synthesis of siloles often suffered from low functional group compatibility due to the usage of stoichiometric organic lithium or magnesium reagents. In the past years, catalytic Si–C bond activation has emerged as a new strategy for the synthesis of siloles. For the benefit of this fast-developing research area, this article highlights the related pioneering work as well as our recent discovery of a tandem cyclization/Si–C (sp3) activation reaction that enables the rapid synthesis of indole- and benzofuran-conjugated siloles. We also discuss the reaction mechanism in greater detail.

 
  • References and Notes

    • 1a Yamaguchi S, Tamao K In Silicon-Containing Polymers: The Science and Technology of their Synthesis and Applications . Jones RG, Ando W, Chojnowski J. Kluwer Academic Publishers; Dordrecht: 2000: 461-498
    • 1b Corey JY In Adv. Organomet. Chem. . Anthony FH, Mark JF. Academic Press; New York: 2011: 1-328
    • 1c Ojima I In The Chemistry of Organic Silicon Compounds . Patai S, Rappoport Z. Wiley-Interscience; Chichester: 1989: 1479
    • 2a Shimizu M, Mochida K, Katoh M, Hiyama T. J. Phys. Chem. C 2010; 114: 10004
    • 2b Shimizu M, Mochida K, Hiyama T. J. Phys. Chem. C 2011; 115: 11265
    • 2c Shimizu M, Mochida K, Hiyama T. Angew. Chem. Int. Ed. 2008; 47: 9760
    • 2d Geramita K, McBee J, Shen Y, Radu N, Tilley TD. Chem. Mater. 2006; 18: 3261
    • 2e Pusztai E, Toulokhonova IS, Temple N, Albright H, Zakai UI, Guo S, Guzei IA, Hu R, West R. Organometallics 2013; 32: 2529
    • 2f Li Z, Dong YQ, Lam JW. Y, Sun J, Qin A, Häußler M, Dong YP, Sung HH. Y, Williams ID, Kwok HS, Tang BZ. Adv. Funct. Mater. 2009; 19: 905
    • 3a Toal SJ, Jones KA, Magde D, Trogler WC. J. Am. Chem. Soc. 2005; 127: 11661
    • 3b Toal SJ, Magde D, Trogler WC. Chem. Commun. 2005; 5465
    • 3c Carroll JB, Braddock-Wilking J. Organometallics 2013; 32: 1905
  • 4 Lu G, Usta H, Risko C, Wang L, Facchetti A, Ratner MA, Marks TJ. J. Am. Chem. Soc. 2008; 130: 7670
    • 5a Chen J, Cao Y. Macromol. Rapid Commun. 2007; 28: 1714
    • 5b Coffin RC, Peet J, Rogers J, Bazan GC. Nat. Chem. 2009; 1: 657
    • 5c Hou J, Chen HY, Zhang S, Li G, Yang Y. J. Am. Chem. Soc. 2008; 130: 16144
    • 5d Chu TY, Lu J, Beaupre S, Zhang Y, Pouliot JR, Wakim S, Zhou J, Leclerc M, Li Z, Ding J, Tao Y. J. Am. Chem. Soc. 2011; 133: 4250
    • 6a Zhan X, Barlow S, Marder SR. Chem. Commun. 2009; 1948
    • 6b Yamaguchi S, Goto T, Tamao K. Angew. Chem. Int. Ed. 2000; 39: 1695
    • 6c Tamao K, Yamaguchi S, Shiro M. J. Am. Chem. Soc. 1994; 116: 11715
  • 7 Corey JY, Chang LS. J. Organomet. Chem. 1986; 307: 7
    • 8a Mochida K, Shimizu M, Hiyama T. J. Am. Chem. Soc. 2009; 131: 8350
    • 8b Shintani R, Otomo H, Ota K, Hayashi T. J. Am. Chem. Soc. 2012; 134: 7305
    • 9a Furukawa S, Kobayashi J, Kawashima T. J. Am. Chem. Soc. 2009; 131: 14192
    • 9b Yabusaki Y, Ohshima N, Kondo H, Kusamoto T, Yamanoi Y, Nishihara H. Chem. Eur. J. 2010; 16: 5581
    • 9c Kuninobu Y, Yamauchi K, Tamura N, Seiki T, Takai K. Angew. Chem. Int. Ed. 2013; 52: 1520
    • 10a Tobisu M, Onoe M, Kita Y, Chatani N. J. Am. Chem. Soc. 2009; 131: 7506
    • 10b Onoe M, Baba K, Kim Y, Kita Y, Tobisu M, Chatani N. J. Am. Chem. Soc. 2012; 134: 19477
    • 11a Wang L, Duan Z. Chin. Sci. Bull. 2012; 58: 307
    • 11b Shirakawa E, Masui S, Narui R, Watabe R, Ikeda D, Hayashi T. Chem. Commun. 2011; 47: 9714
    • 11c Ojima I, Fracchiolla DA, Donovan RJ, Banerji P. J. Org. Chem. 1994; 59: 7594
    • 11d Wang C, Luo Q, Sun H, Guo X, Xi Z. J. Am. Chem. Soc. 2007; 129: 3094
    • 11e Liang Y, Geng W, Wei J, Ouyang K, Xi Z. Org. Biomol. Chem. 2012; 10: 1537
    • 12a Nakao Y, Hiyama T. Chem. Soc. Rev. 2011; 40: 4893
    • 12b Seiser T, Cramer N. Angew. Chem. Int. Ed. 2010; 49: 10163
    • 12c Shindo M, Matsumoto K, Shishido K. Angew. Chem. Int. Ed. 2004; 43: 104
    • 12d Rauf W, Brown JM. Angew. Chem. Int. Ed. 2008; 47: 4228
    • 13a Liang Y, Zhang S, Xi Z. J. Am. Chem. Soc. 2011; 133: 9204
    • 13b Liang Y, Geng W, Wei J, Xi Z. Angew. Chem. Int. Ed. 2012; 51: 1934
    • 13c Meng T, Ouyang K, Xi Z. RSC Advances 2013; 3: 14273
    • 14a Isono N, Lautens M. Org. Lett. 2009; 11: 1329
    • 14b Shu D, Song W, Li X, Tang W. Angew. Chem. Int. Ed. 2013; 52: 3237
    • 14c Li X, Song W, Tang W. J. Am. Chem. Soc. 2013; 135: 16797
    • 14d Yao B, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2012; 51: 12311
  • 15 Müller TE, Hultzsch KC, Yus M, Foubelo F, Tada M. Chem. Rev. 2008; 108: 3795
    • 16a So CM, Kume S, Hayashi T. J. Am. Chem. Soc. 2013; 135: 10990
    • 16b Davidson PJ, Lappert MF, Pearce R. Acc. Chem. Res. 1974; 7: 209
  • 17 Crystallographic data have been deposited at the Cambridge Crystallographic Data Centre as CCDC-948123 (2m) and 979513 (3b). Copies of the data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.
  • 18 Chen X.-K, Zou L.-Y, Ren A.-M, Fan J.-X. Phys. Chem. Chem. Phys. 2011; 13: 19490
    • 19a Yu Z, Lan Y. J. Org. Chem. 2013; 78: 11501
    • 19b Chen WJ, Lin ZY. Dalton Trans. 2014; 43: 11138
  • 20 Barder TE, Walker SD, Martinelli JR, Buchwald SL. J. Am. Chem. Soc. 2005; 127: 4685