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Introduction

In the biosynthesis of polyketides and fatty acids, nature
manipulates the enzymatic activation of malonic acid half
thioesters (MAHTs) to generate thioester enolates, which
undergo a chain elongation step by a decarboxylative
Claisen condensation. Inspired by the biocatalytic process,
scientists have attempted to mimic nature’s approach of
decarboxylative organic reactions using bench-stable
MAHTs as the efficient C2-unit nucleophiles and discovered
diverse catalytic asymmetric processes using transition-
metal catalysts as well as organocatalysts.1

Owing to the highly versatile nature of the thioester
moiety, the resulting products can be smoothly converted
into a variety of useful functional groups such as alcohol,
amide, aldehyde, ketone, ester, carboxylic acid derivatives,
and cross-coupled products.2

The general synthetic strategy for MAHTs is shown in
Scheme 1.3

Scheme 1  General procedure for the preparation of MAHTs

Table 1  Use of Malonic Acid Half Thioesters (MAHTs) as Efficient Enolate Precursors in Biomimetic Catalysis
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(A) Claisen Condensation with Phenyl Thioacetate: In 1978, a semi-
nal study for the utilization of MAHTs in organic synthesis was re-
ported. Mimicking type I polyketide synthase (PKS) from nature, the
decarboxylative Claisen condensation of n-butyl substituted MAHT
to phenyl thioacetate was disclosed by Kobuke and Yoshida,3a using
imidazole with magnesium acetate as efficient reaction promoters.

(B) Metal-Catalyzed Aldol Reaction with Aldehydes: An achiral ver-
sion of Cu(II)-catalyzed decarboxylative aldol reactions of aldehydes
with MAHTs was reported by the Shair group in 2003, which is the
first example of mimicking type II PKS.4a Subsequently, Cozzi4b and
Shair4c independently reported asymmetric decarboxylative aldol
reaction of aldehydes with MAHTs catalyzed by Cu(OTf)2 with chiral
ligands. In particular, Shair reported the use of Cu(II)/bis(oxazoline)
[(R,R)-1] to afford alkyl substituted α-methyl-β-hydroxy thioesters
in good to quantitative yields with excellent enantioselectivities.

(C) Organocatalytic Aldol Reaction with Aldehydes: Song, List and
co-workers reported the first example of enantioselective organo-
catalytic decarboxylative aldol reaction of MAHTs with α-unsubsti-
tuted aldehydes using Cinchona-derived sulfonamide
organocatalyst 2.5 The aldol products were readily transformed into
enantioenriched aldehydes as well as amides, which are the key in-
termediates for the synthesis of bioactive compounds such as fluox-
etine, tomoxetine, paroxetine, and duloxetine.
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(D) Organocatalytic Mannich Reaction with Imines: In 2007, Ricci
et al. reported the first organocatalytic decarboxylative Mannich re-
action of MAHTs with N-protected imines catalyzed by Cinchona-
derived β-isocupreidine (3).6a Optically active β3-amino thioesters
were obtained in good yields with up to 79% ee. Later, a similar pro-
tocol was reported by the Tan group, in which chiral guanidine was
utilized as an efficient organocatalyst.6b

(E) Organocatalytic Mannich Reaction with Ketimines: Shibata
and co-workers reported enantioselective decarboxylative addition
of MAHTs to ketimines catalyzed by Cinchona-based N-heteroarene-
sulfonamide.7 The Mannich-type reaction afforded chiral β-amino-
thioesters incorporating a quaternary carbon center in excellent
yields with 78–83% ee. 8-Quinoline sulfonylated sulfonamide 4
proved to be the most effective catalyst in terms of chemical yield
and enantioselectivity (90%, 83% ee). The resulting product was
readily converted into AG-041R, gastrin/cholecyctokinin-B receptor
antagonist in three steps.

(F) Organocatalytic Michael Addition Reaction with Nitroolefins:
The first asymmetric decarboxylative Michael addition reactions of
MAHTs to diverse nitroolefins were disclosed by the Wennemers
group,8a using 20 mol% of Cinchona-derived urea catalyst 5 as an ef-
ficient promoter. Good yields with moderate enantioselectivities
(55–67% ee) were achieved in THF. High enantioselectivities (73–
90% ee) were obtained in ethyl vinyl ether (EVE) although yields
were slightly decreased. They expanded this protocol to the synthe-
sis of antidepressant (R)-rolipram. More recently, the groups of
Shibasaki8b and Song8c independently reported the optimization
studies of the same reaction using heterobimetallic Ni/La-Salan
complex and Cinchona-derived squaramide organocatalyst, respec-
tively.
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