Synlett 2015; 26(12): 1677-1682
DOI: 10.1055/s-0034-1380210
letter
© Georg Thieme Verlag Stuttgart · New York

Iodine-Mediated Domino Protocol for the Synthesis of Benz­amides from Ethylarenes via sp3 C–H Functionalization

Kamlesh S. Vadagaonkar
a   Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai 400019, India
,
Hanuman P. Kalmode
a   Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai 400019, India
,
Sattey Prakash
b   National Centre for Nanosciences and Nanotechnology, University of Mumbai, Mumbai 400098, India   Email: achaskar25@gmail.com
,
Atul C. Chaskar*
a   Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai 400019, India
b   National Centre for Nanosciences and Nanotechnology, University of Mumbai, Mumbai 400098, India   Email: achaskar25@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 18 March 2015

Accepted: 04 April 2015

Publication Date:
21 May 2015 (online)


Dedicated to our mentor Prof. P. M. Bhate on the occasion of his 61st birthday

Abstract

An efficient, metal-free domino protocol for the synthesis of benzamides has been developed from ethylarenes using aqueous ammonia. The reaction proceeds through the formation of triiodomethyl ketone intermediate in the presence of iodine as the promoter and TBHP as an oxidant followed by nucleophilic substitution with aqueous ammonia, forming an amide. This operationally simple, functional-group-tolerant tandem approach provides an easy access to the broad range of biologically important benzamides.

Supporting Information

 
  • References and Notes

  • 1 Arthur G. The Amide Linkage: Selected Structural Aspects in Chemistry, Biochemistry, and Materials Science. Wiley-Interscience; New York: 2000
  • 2 Budavari S. The Merck Index. Merck; Rahway, NJ: 1989. 11th ed
  • 3 Pattabiraman VR, Bode JW. Nature (London, U.K.) 2011; 480: 471
    • 4a Matsuda F. Chemtech 1977; 7: 306
    • 4b Mabermann CE In Encyclopedia of Chemical Technology. Vol. 1. Kroschwitz JI. Wiley; New York: 1991: 251-266
    • 4c Lipp D In Encyclopedia of Chemical Technology. Vol. 1. Kroschwitz JI. Wiley; New York: 1991: 266-287
    • 4d Opsahl R In Encyclopedia of Chemical Technology. Vol. 2. Kroschwitz JI. Wiley; New York: 1991: 346-356
    • 5a Soai K, Ookawa A, Hayashi H. J. Chem. Soc., Chem. Commun. 1983; 668
    • 5b Prasad AS. B, Kanth JV. B, Periasamy M. Tetrahedron 1992; 48: 4623
    • 5c Yang C, Pittman CU. Synth. Commun. 1998; 28: 2027
    • 5d Bose DS, Jayalakshmi B. J. Org. Chem. 1999; 64: 1713
    • 5e Manjula K, Afzal Pasha M. Synth. Commun. 2007; 37: 1545
    • 5f Kuo C.-W, Zhu J.-L, Wu J.-D, Chu C.-M, Yao C.-F, Shia K.-S. Chem. Commun. 2007; 301
    • 5g Chaudhari K, Mahajan U, Bhalerao D, Akamanchi K. Synlett 2007; 2815
    • 5h Kumar MP, Liu R.-S. J. Org. Chem. 2006; 71: 4951
    • 5i Gayon E, Szymczyk M, Gérard H, Vrancken E, Campagne J.-M. J. Org. Chem. 2012; 77: 9205
    • 5j Zheng M, Huang L, Huang H, Li X, Wu W, Jiang H. Org. Lett. 2014; 16: 5906
    • 5k Altenhoff G, Glorius F. Adv. Synth. Catal. 2004; 346: 1661
    • 5l Ibrahim N, Legraverend M. J. Org. Chem. 2009; 74: 463
    • 5m Pan Y, Zheng F, Lin H, Zhan Z. J. Org. Chem. 2009; 74: 3148
  • 6 Roy S, Roy S, Gribble GW. Tetrahedron 2012; 68: 9867
    • 7a Khalafi-Nezhad A, Mokhtari B, Rad MN. S. Tetrahedron Lett. 2003; 44: 7325
    • 7b Khalafi-Nezhad A, Parhami A, Rad MN. S, Zarea A. Tetrahedron Lett. 2005; 46: 6879
    • 7c Zhang L, Wang S, Zhou S, Yang G, Sheng E. J. Org. Chem. 2006; 71: 3149
    • 7d Shie J.-J, Fang J.-M. J. Org. Chem. 2003; 68: 1158
    • 7e Tamaru Y, Yamada Y, Yoshida Z. Synthesis 1983; 474
    • 7f Tillack A, Rudloff I, Beller M. Eur. J. Org. Chem. 2001; 523
    • 7g Veitch GE, Bridgwood KL, Ley SV. Org. Lett. 2008; 10: 3623
    • 7h Rodrigues Rda C, Barros IM. A, Lima EL. S. Tetrahedron Lett. 2005; 46: 5945
    • 9a Yamaguchi K, Matsushita M, Mizuno N. Angew. Chem. 2004; 116: 1602
    • 9b Yamaguchi K, Matsushita M, Mizuno N. Angew. Chem. Int. Ed. 2004; 43: 1576
    • 9c Crestani MG, Arévalo A, García JJ. Adv. Synth. Catal. 2006; 348: 732
    • 9d Moorthy JN, Singhal N. J. Org. Chem. 2005; 70: 1926
    • 9e Jiang X, Minnaard AJ, Feringa BL, de Vries JG. J. Org. Chem. 2004; 69: 2327
    • 9f Goto A, Endo K, Saito S. Angew. Chem. 2008; 120: 3663
    • 9g Goto A, Endo K, Saito S. Angew. Chem. Int. Ed. 2008; 47: 3607
    • 10a Field L, Hughmark PB, Shumaker SH, Marshall WS. J. Am. Chem. Soc. 1961; 83: 1983
    • 10b Leusink AJ, Meerbeek TG, Noltes JG. Recl. Trav. Chim. Pays-Bas 2010; 95: 123
    • 10c Park S, Choi Y, Han H, Ha Yang S, Chang S. Chem. Commun. 2003; 1936
    • 10d Owston NA, Parker AJ, Williams JM. J. Org. Lett. 2007; 9: 3599
    • 10e Fujiwara H, Ogasawara Y, Yamaguchi K, Mizuno N. Angew. Chem. 2007; 119: 5294
    • 10f Fujiwara H, Ogasawara Y, Yamaguchi K, Mizuno N. Angew. Chem. Int. Ed. 2007; 46: 5202
    • 10g Owston NA, Parker AJ, Williams JM. J. Org. Lett. 2007; 9: 73
  • 11 Chan W.-K, Ho C.-M, Wong M.-K, Che C.-M. J. Am. Chem. Soc. 2006; 128: 14796
    • 12a Gunanathan C, Ben-David Y, Milstein D. Science 2007; 317: 790
    • 12b Zweifel T, Naubron J.-V, Grützmacher H. Angew. Chem. Int. Ed. 2009; 48: 559
    • 13a Kim JW, Yamaguchi K, Mizuno N. Angew. Chem. Int. Ed. 2008; 47: 9249
    • 13b Mori K, Yamaguchi K, Mizugaki T, Ebitani K, Kaneda K. Chem. Commun. 2001; 461
    • 14a Yamaguchi K, Kobayashi H, Oishi T, Mizuno N. Angew. Chem. Int. Ed. 2012; 51: 544
    • 14b Nie R, Shi J, Xia S, Shen L, Chen P, Hou Z, Xiao F.-S. J. Mater. Chem. 2012; 22: 18115
  • 15 Wang Y, Yamaguchi K, Mizuno N. Angew. Chem. Int. Ed. 2012; 51: 7250
  • 16 Wu X.-F, Neumann H, Beller M. Chem. Eur. J. 2010; 16: 9750
  • 17 Cao L, Ding J, Gao M, Wang Z, Li J, Wu A. Org. Lett. 2009; 11: 3810
  • 18 Rajendar K, Kant R, Narender T. Adv. Synth. Catal. 2013; 355: 3591
  • 19 Sharif M, Gong J.-L, Langer P, Beller M, Wu X.-F. Chem. Commun. 2014; 50: 4747
  • 20 Ghosh SC, Ngiam JS. Y, Seayad AM, Tuan DT, Chai CL. L, Chen A. J. Org. Chem. 2012; 77: 8007
  • 21 Song Q, Feng Q, Yang K. Org. Lett. 2014; 16: 624
    • 22a Vadagaonkar KS, Murugan K, Chaskar AC, Bhate PM. RSC Adv. 2014; 4: 34056
    • 22b Vadagaonkar KS, Kalmode HP, Murugan K, Chaskar AC. RSC Adv. 2015; 5: 5580
    • 22c Kalmode HP, Vadagaonkar KS, Chaskar AC. RSC Adv. 2014; 4: 60316
    • 22d Kalmode HP, Vadagaonkar KS, Chaskar AC. Synthesis 2015; 47: 429
    • 22e Pawar B, Padalkar V, Phatangare K, Nirmalkar S, Chaskar A. Catal. Sci. Technol. 2011; 1: 1641
    • 22f Takale S, Parab S, Phatangare K, Pisal R, Chaskar A. Catal. Sci. Technol. 2011; 1: 1128
    • 22g Vadagaonkar KS, Kalmode HP, Prakash S, Chaskar AC. New J. Chem. 2015; 39: 3639
    • 22h Kalmode HP, Vadagaonkar KS, Murugan K, Prakash S, Chaskar AC. RSC Adv. 2015; 5: 35166
    • 22i Kalmode HP, Vadagaonkar KS, Murugan K, Chaskar AC. New J. Chem. 2015; in press; DOI: 10.1039/c5nj00302d
  • 23 General Procedure for the Oxidative Amidation of Ethylarenes A sealed tube equipped with a magnetic stirring bar was charged with ethylarene (1, 1.0 mmol), aq NH3 (2, 25% aq solution, 10.0 mmol), I2 (1.1 mmol), and TBHP (6.0 mmol, 70% aq solution) at r.t. The resulting mixture was heated to 100 °C for 3.0 h. After completion of the reaction (monitored by TLC), sat. Na2S2O3 solution (10 mL) was added to the reaction mixture, and it was extracted with EtOAc (2 × 20 mL). The organic layer was washed with brine solution (20 mL), dried over anhydrous Na2SO4 and concentrated under reduced pressure. The residue was purified by column chromatography on 100–200 mesh silica gel using EtOAc–n-hexane (1:2) as the eluent to obtain the corresponding benzamide 3.