Synthesis 2015; 47(07): 924-933
DOI: 10.1055/s-0034-1380157
feature
© Georg Thieme Verlag Stuttgart · New York

Temperature-Dependent Direct Enantioconvergent Silylation of a Racemic Cyclic Allylic Phosphate by Copper(I)-Catalyzed Allylic Substitution

Lukas B. Delvos
Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany   Email: martin.oestreich@tu-berlin.de
,
Martin Oestreich*
Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany   Email: martin.oestreich@tu-berlin.de
› Author Affiliations
Further Information

Publication History

Received: 16 January 2015

Accepted: 19 January 2015

Publication Date:
23 February 2015 (online)


Abstract

The near-quantitative transformation of a racemic cyclic allylic phosphate to a highly enantiomerically enriched allylic silane by allylic substitution with a silicon nucleophile is reported. The reaction is catalyzed by a chiral NHC–copper(I) complex. Experimental analysis revealed a rare case of a direct enantioconvergent transformation where the enantiomeric allylic phosphates converge to the same allylic silane by two distinctive SN2′ pathways with opposite diastereofacial selectivity.

Supporting Information

 
  • References

  • 1 For a recent review of non-enzymatic catalytic kinetic resolution, see: Pellissier H. Adv. Synth. Catal. 2011; 353: 1613
  • 2 For a general review of kinetic resolution, see: Vedejs E, Jure M. Angew. Chem. Int. Ed. 2005; 44: 3974
  • 3 For a recent review of dynamic kinetic resolution, see: Pellissier H. Tetrahedron 2011; 67: 3769
  • 4 For a review of palladium(0)-catalyzed dynamic asymmetric kinetic transformations, see: Trost BM, Fandrich DR. Aldrichimica Acta 2007; 40: 72
  • 5 Ito H, Kunii S, Sawamura M. Nat. Chem. 2010; 2: 972
  • 6 Related processes where both enantiomers of a substrate are converted into two non-enantiomeric products by a single chiral catalyst are also known and were summarized as divergent reactions on racemic mixtures: Miller LC, Sarpong R. Chem. Soc. Rev. 2011; 40: 4550 ; and references cited therein

    • For enantioselective variants with prochiral substrates, see:
    • 7a Ito H, Ito S, Sasaki Y, Matsuura Y, Sawamura M. J. Am. Chem. Soc. 2007; 129: 14856
    • 7b Ito H, Kosaka Y, Nonoyama K, Sasaki Y, Sawamura M. Angew. Chem. Int. Ed. 2008; 47: 7424
    • 7c Ito H, Okura T, Matsuura K, Sawamura M. Angew. Chem. Int. Ed. 2010; 49: 560
  • 8 Feringa BL, Pineschi M, Arnold LA, Imbos R, de Vries AH. M. Angew. Chem., Int. Ed. Engl. 1997; 36: 2620
    • 9a Langlois J.-B, Alexakis A. Chem. Commun. 2009; 3868
    • 9b Langlois J.-B, Alexakis A. Adv. Synth. Catal. 2010; 352: 447
  • 10 Langlois J.-B, Emry D, Mareda J, Alexakis A. Chem. Sci. 2012; 3: 1062

    • For syntheses of silyl boronic esters, see:
    • 11a Suginome M, Matsuda T, Ito Y. Organometallics 2000; 19: 4647

    • For a general review of Si–B bond activation, see:
    • 11b Oestreich M, Hartmann E, Mewald M. Chem. Rev. 2013; 113: 402

      For allylic substitution, see:
    • 12a Racemic: Vyas DJ, Oestreich M. Angew. Chem. Int. Ed. 2010; 49: 8513
    • 12b Enantioselective: Delvos LB, Vyas DJ, Oestreich M. Angew. Chem. Int. Ed. 2013; 52: 4650
    • 12c Diastereoselective: Hazra CK, Irran E, Oestreich M. Eur. J. Org. Chem. 2013; 4903
    • 12d Enantioselective: Delvos LB, Hensel A, Oestreich M. Synthesis 2014; 46: 2957

      For our work on 1,2-addition, see:
    • 13a Aldehydes, racemic: Kleeberg C, Feldmann E, Hartmann E, Vyas DJ, Oestreich M. Chem. Eur. J. 2011; 17: 13538
    • 13b Imines, racemic: Vyas DJ, Fröhlich R, Oestreich M. Org. Lett. 2011; 13: 2094
    • 13c Imines, asymmetric: Hensel A, Nagura K, Delvos LB, Oestreich M. Angew. Chem. Int. Ed. 2014; 53: 4964

      Hayashi and co-workers reported a related enantioselective allylic substitution (cf. refs. 12b and 12d):
    • 14a Takeda M, Shintani R, Hayashi T. J. Org. Chem. 2013; 78: 5007

    • For a comparison of both methods and indirect synthesis of α-chiral silanes by asymmetric copper(I) catalysis, see:
    • 14b Delvos LB, Oestreich M. Chim. Oggi 2013; 31: 74
    • 15a Park J, McQuade D. Synthesis 2012; 44: 1485

    • For B–B bond activation for asymmetric 1,4-addition, see:
    • 15b Park JK, Lackey HH, Rexford MD, Kovnir K, Shatruk M, McQuade DT. Org. Lett. 2010; 12: 5008

    • For allylic substitution with boron nucleophiles catalyzed by a closely related complex, see:
    • 15c Park JK, Lackey HH, Ondrusek BA, McQuade DT. J. Am. Chem. Soc. 2011; 133: 2410
    • 15d Park JK, McQuade DT. Angew. Chem. Int. Ed. 2012; 51: 2717
  • 16 For a palladium(0)-catalyzed silylation of 3f with moderate enantioselectivity, see: Hayashi T, Ohno A, Lu S.-j, Matsumoto Y, Fukuyo E, Yanagi K. J. Am. Chem. Soc. 1994; 116: 4221
  • 17 We note here that we used the term enantioconvergent incorrectly in ref. 12b. It is a stereoconvergent allylic substitution.
  • 18 Fleming I, Lawrence NJ. J. Chem. Soc., Perkin Trans. 1 1992; 3309
  • 19 Sarakinos G, Corey EJ. Org. Lett. 1999; 1: 811
  • 20 Lee K.-s, Hoveyda AH. J. Am. Chem. Soc. 2010; 132: 2898
  • 21 Walter C, Auer G, Oestreich M. Angew. Chem. Int. Ed. 2006; 45: 5675
  • 22 Hayashi T, Yamasaki K, Mimura M, Uozomi Y. J. Am. Chem. Soc. 2004; 126: 3036
  • 23 Lüssem BJ, Gais H.-J. J. Am. Chem. Soc. 2003; 125: 6066
  • 24 Liotta D, Zima G, Saindane M. J. Org. Chem. 1982; 47: 1258
  • 25 Fleming I, Higgins D, Lawrence NJ, Thomas AP. J. Chem. Soc., Perkin Trans. 1 1992; 3331
  • 26 Oestreich M, Auer G. Adv. Synth. Catal. 2005; 347: 637
  • 27 Ramadhar TR, Kawakima J.-I, Lough AJ, Batey RA. Org. Lett. 2010; 12: 4446
  • 28 Qian X, Auffrant A, Felouat A, Gosmini C. Angew. Chem. Int. Ed. 2011; 50: 10402
  • 29 Renaud P, Fox MA. J. Org. Chem. 1988; 53: 3745
  • 30 Schmidtmann ES, Oestreich M. Chem. Commun. 2006; 3643
  • 31 Ochiai M, Iwaki S, Takaoka Y, Nagao Y. Organometallics 1989; 8: 1751