Synthesis 2015; 47(12): 1726-1732
DOI: 10.1055/s-0034-1380136
paper
© Georg Thieme Verlag Stuttgart · New York

Cross-Coupling of Nonactivated Primary and Secondary Alkyl Halides with Aryl Grignard Reagents Catalyzed by Chiral Iron Pincer Complexes

Gerald Bauer
Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, Lausanne 1015, Switzerland   Email: xile.hu@epfl.ch
,
Chi Wai Cheung
Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, Lausanne 1015, Switzerland   Email: xile.hu@epfl.ch
,
Xile Hu*
Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, Lausanne 1015, Switzerland   Email: xile.hu@epfl.ch
› Author Affiliations
Further Information

Publication History

Received: 14 November 2014

Accepted: 07 January 2015

Publication Date:
11 February 2015 (online)


Abstract

Iron(III) bisoxazolinylphenylamido (bopa) pincer complexes are efficient precatalysts for the cross-coupling of nonactivated primary and secondary alkyl halides with phenyl Grignard reagents. The reactions proceed at room temperature in moderate to excellent yields. A variety of functional groups can be tolerated. The enantioselectivity of the coupling of secondary alkyl halides is low.

Supporting Information

 
  • References

  • 1 Frisch AC, Beller M. Angew. Chem. Int. Ed. 2005; 44: 674
  • 2 Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
    • 3a Sherry BD, Fürstner A. Acc. Chem. Res. 2008; 41: 1500
    • 3b Rudolph A, Lautens M. Angew. Chem. Int. Ed. 2009; 48: 2656
    • 3c Leitner A. Iron-Catalyzed Cross-Coupling Reactions. In Iron Catalysis in Organic Chemistry. Plietker B. Wiley-VCH; Weinheim: 2008: 147-176
    • 3d Fürstner A, Martin R. Chem. Lett. 2005; 34: 624
    • 3e Bolm C, Legros J, Le Paih J, Zani L. Chem. Rev. 2004; 104: 6217
  • 4 Cheung CW, Ren P, Hu X. Org. Lett. 2014; 16: 2566
  • 5 Nakamura M, Matsuo K, Ito S, Nakamura E. J. Am. Chem. Soc. 2004; 126: 3686
  • 6 Nagano T, Hayashi T. Org. Lett. 2004; 6: 1297
  • 7 Martin R, Fürstner A. Angew. Chem. Int. Ed. 2004; 43: 3955
    • 8a Bedford RB, Bruce DW, Frost RM, Hird M. Chem. Commun. 2005; 4161
    • 8b Bedford RB, Betham M, Bruce DW, Danopoulos AA, Frost RM, Hird M. J. Org. Chem. 2005; 71: 1104
  • 9 Bedford RB, Bruce DW, Frost RM, Goodby JW, Hird M. Chem. Commun. 2004; 2822
  • 10 Bedford RB, Betham M, Bruce DW, Davis SA, Frost RM, Hird M. Chem. Commun. 2006; 1398
  • 11 Saito B, Fu GC. J. Am. Chem. Soc. 2008; 130: 6694
  • 12 Paul A, Ladame S. Org. Lett. 2009; 11: 4894
  • 13 McKennon MJ, Meyers AI, Drauz K, Schwarm M. J. Org. Chem. 1993; 58: 3568
  • 14 See the experimental section.
  • 15 Inagaki T, Phong LT, Furuta A, Ito J.-i, Nishiyama H. Chem. Eur. J. 2010; 16: 3090
  • 16 Di Franco T, Boutin N, Hu X. Synthesis 2013; 45: 2949
  • 17 Love BE, Jones EG. J. Org. Chem. 1999; 64: 3755
  • 18 Matsubara K, Ishibashi T, Koga Y. Org. Lett. 2009; 11: 1765
  • 19 Lee J.-Y, Fu GC. J. Am. Chem. Soc. 2003; 125: 5616
  • 20 Dreher SD, Lim S.-E, Sandrock DL, Molander GA. J. Org. Chem. 2009; 74: 3626
  • 21 Vechorkin O, Proust V, Hu X. J. Am. Chem. Soc. 2009; 131: 9756
  • 22 Denmark SE, Cresswell AJ. J. Org. Chem. 2013; 78: 12593
  • 23 Aikawa H, Tago S, Umetsu K, Haginiwa N, Asao N. Tetrahedron 2009; 65: 1774
  • 24 Reddy UC, Bondalapati S, Saikia AK. J. Org. Chem. 2009; 74: 2605
  • 25 Li L.-J, Lu B, Li T.-S, Li J.-T. Synth. Commun. 1998; 28: 1439