Synthesis 2015; 47(07): 944-948
DOI: 10.1055/s-0034-1380002
paper
© Georg Thieme Verlag Stuttgart · New York

Efficient Syntheses of Vitamin K Chain-Shortened Acid Metabolites

Aaron M. Teitelbaum*
Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195, USA   Email: atbaum@uw.edu
,
Michele Scian
Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195, USA   Email: atbaum@uw.edu
,
Wendel L. Nelson
Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195, USA   Email: atbaum@uw.edu
,
Allan E. Rettie
Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195, USA   Email: atbaum@uw.edu
› Author Affiliations
Further Information

Publication History

Received: 23 October 2014

Accepted after revision: 12 January 2015

Publication Date:
18 February 2015 (online)


Abstract

Vitamin K sequentially undergoes ω-oxidation followed by successive rounds of β-oxidation to ultimately produce two chain-shortened carboxylic acid metabolites, vitamin K acid 1 and vitamin K acid 2. Two facile syntheses of these acid metabolites are described, each starting from the same commercially available menadione-cyclopentadiene adduct. Vitamin K acid 1 was synthesized in five steps via alkylation with geranyl bromide followed by subsequent oxidation reactions, while fully retaining the trans-configuration of the side chain 2′,3′-double bond. Vitamin K acid 2 was synthesized in five steps via alkylation with dimethylallyl chloride and subsequent oxidation reactions.

Supporting Information

 
  • References

  • 1 Cockayne S, Adamson J, Lanham-New S, Shearer MJ, Gilbody S, Torgerson DJ. Arch. Intern. Med. 2006; 166: 1256
  • 2 Beulens JW, Bots ML, Atsma F, Bartelink ML, Prokop M, Geleijnse JM, Witteman JC, Grobee DE, van der Schouw YT. Atherosclerosis 2009; 203: 489
  • 3 Vos M, Esposito G, Edirisinghe JN, Vilain S, Haddad DM, Slabbaert JR, Van Meensel S, Schaap O, De Strooper B, Meganathan R, Morais VA, Verstreken P. Science 2012; 336: 1306
  • 4 Shearer MJ, Barkhan P. Biochim. Biophys. Acta 1973; 297: 300
  • 5 McBurney A, Shearer MJ, Barkhan P. Biochem Med. 1980; 24: 250
  • 6 Harrington DJ, Soper R, Edwards C, Savidge GF, Hodges SJ, Shearer MJ. J. Lipid. Res. 2005; 46: 1053
  • 7 Watanabe M, Kawada M, Nishikawa M, Imada I, Morimoto H. Chem. Pharm. Bull. 1974; 22: 566
  • 8 Watanabe M, Okamoto K, Imada I, Morimoto H. Chem. Pharm. Bull. 1978; 26: 774
  • 9 Masaki Y, Sakuma K, Kaji K. Chem. Pharm. Bull. 1985; 33: 1930
  • 10 Soper RJ. Ph.D. Dissertation . University of Essex; UK: 2005: 15-31
  • 11 Ji Y, Zong Z, Wei X, Tu G, Xu L, He L. Synth. Commun. 2003; 33: 763
  • 12 Tago K, Arai M, Kogen H. J. Chem. Soc., Perkin Trans. 1 2000; 2073
  • 13 Travis BR, Sivakumar M, Hollist GO, Borhan B. Org. Lett. 2003; 5: 1031
  • 14 Suhara Y, Hirota Y, Nakagawa K, Kamao M, Tsugawa N, Okano T. Bioorg. Med. Chem. 2008; 16: 3108
  • 15 Cadierno V, Francos J, Gimeno J, Nebra N. Chem. Commun. 2007; 2536
  • 16 Wu R, Beauchamps MG, Laquidara JM, Sowa Jr JR. Angew. Chem. Int. Ed. 2012; 51: 2106
  • 17 Hunson M. Synthesis 2005; 2487