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(R)- and (S)-3,3′-bis(2,4,6-triisopropylphenyl)-1,1′-
binaphthyl-2,2′-diylhydrogenphosphates, also known as
(R)-TRIP and (S)-TRIP are chiral phosphoric acids (CPA’s) de-
rived from BINOL. They are available from commercial
sources, and they can be prepared through a three-step se-
quence that starts with a Kumada coupling between com-
pound 1 and two equivalents of 2,4,6-(triisoprop-
oxy)phenylmagnesiumchloride. This reaction is followed by
a deprotection and a high-yielding phosphorylation step
(Scheme 1a).1

Since their first application in enantioselective organo-
catalytic hydrogenations by the List Group, in 2005,2 these
catalysts have been applied in numerous enantioselective
transformations, including strategies involving cooperative
catalysis.3

Scheme 1  General synthetic sequence for the preparation of (R)- and 
(S)-TRIP

Table 1  Use of (R)-TRIP and (S)-TRIP – Very Recent Applications
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(A) Early in 2013, List and co-workers reported an asymmetric pro-
tonation of silyl ketene imines (SKI’s) catalyzed by (S)-TRIP or STRIP 
(a spiroderivative of TRIP).4 During the catalyst screening both of 
these showed high efficiency. This transformation has no prece-
dents in literature and showed to be a mild and straightforward 
strategy to access α-branched nitriles with high enantiopurity.

(B) Faber, Orthaber and co-workers reported an asymmetric allyla-
tion reaction between a zinc(II)-allylbutyrolactone species and (het-
ero)aromatic aldehydes using TRIP as catalyst.5 DFT studies showed 
that a complex ion-pair involving TRIP, Zn2+ and substrates is formed 
prior to enantioenriched β-substituted α-methylenebutyrolactone 
formation. Although high enantioselectivities had been reached, a 
two-step total synthesis of natural product (S)-(–)-hydroxymataire-
sinol was also performed in order to demonstrate the applicability 
of the methodology.
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(C) In order to expand the applicability of isochromenyliums in en-
antioselective transformations, an asymmetric [4+2] annulation be-
tween 2-hydroxystyrenes and isochromenyliums prepared in situ 
from 2-alkynylbenzaldehyes or 1-(2-alkynylphenyl)ketones was de-
veloped by Yao and co-workers.6 Among the catalytic conditions in-
vestigated, the combination of Pd(OAc)2 with (S)-TRIP gave the best 
results. This cooperative catalytic system showed to be applicable 
for a broad spectrum of substrates. Good to excellent enantioselec-
tivities were achieved.

(D) Still in 2013, an asymmetric synthesis of cyclic trifluoromethyl-
dihydroquinazolines via a TRIP-catalyzed aza-Friedel–Crafts reac-
tion between indoles and cyclic N-acylketimines was developed by 
Ma and co-workers.7 This work was based on a previous report in 
which aryl-imines generated in situ from hemi-acetals were used as 
electrophiles.8a In 2011, Bolm and co-workers had also reported an-
other example using trifluoropyruvate derived N-Boc-imines as 
electrophiles.8b

(E) Recently, the desymmetrization of pro-chiral diesters by an in-
tramolecular transesterification catalyzed by TRIP was disclosed 
and had its scope explored by Petersen and co-workers.9 The pro-
cess showed to be scalable and robust, leading to the preparation of 
several enantioenriched lactones with all-carbon chiral quaternary 
centers, which showed to be useful small building blocks.

(F) Organocatalysed transfer hydrogenation of heteroaromatic com-
pounds has been widely investigated over the last years. Recently, 
Zhou and co-workers reported the use of TRIP on the asymmetric 
hydrogenation of 2-aryl-quinolone-3-amines and 3-(trifluorometh-
yl)quinolones with up to 99% and 98% ee, respectively.10a,b

(G) Taking advantage of a highly favoured heterodimerization of car-
boxylic acids with TRIP, List and co-workers investigated the de-
symmetrization of meso-aziridines and the kinetic resolution of 
terminal aziridines using this catalyst.11 The catalytic system proved 
useful for the conversion of cyclic and acyclic aziridines into O-pro-
tected amino alcohols with high yields and enantioselectivities. This 
was the first report of a CPA’s catalyzed reaction using carboxylic ac-
ids as nucleophiles instead of only as additives, which has opened 
new perspectives in the field.
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