Synthesis **Key words** diazoesters alkenes copper Polymer-Supported iron nanoparticles cyclopropanation S. ISHIKAWA, R. HUDSON, M. MASNADI, M. BATEMAN, A. CASTONGUAY, N. BRAIDY, A. MOORES,* C.-J. LI* (MCGILL UNIVERSITY, MONTREAL AND UNIVERSITÉ DE SHERBROOKE, CANADA) Cyclopropanation of Diazoesters with Styrene Derivatives Catalyzed by Magnetically Recoverable Copper-Plated Iron Nanoparticles Tetrahedron 2014, 70, 8952-8958. ## Cyclopropanation of Alkenes with Diazoesters Using Cu@FeNPs **Significance:** Copper-plated iron nanoparticles (Cu@FeNPs) catalyzed the cyclopropanation of alkenes with diazoesters to give the corresponding substituted cyclopropanes in up to 76% yield (16 examples). In the reaction of 4-vinylanisole with benzyl diazoacetate, the catalyst was recovered by magnetic separation and reused four times without significant loss of catalytic activity. **Comment:** The authors reported previously the preparation of Cu@FeNPs and its application to the Huisgen reaction (*Green Chem.* **2012**, *14*, 622). ICP analysis revealed that 12 ppm of copper leached out from the fresh catalyst during the reaction. The leached copper species showed no catalytic activity. **SYNFACTS Contributors:** Yasuhiro Uozumi, Hiroaki Tsuji Synfacts 2015, 11(1), 0097 Published online: 15.12.2014 **DOI:** 10.1055/s-0034-1379711; **Reg-No.:** Y14114SF Polymer-Supported Synthesis #### Key words nanoporous gold reduction α,β-unsaturated aldehydes alcohols B. S. TAKALE, S. WANG, X. ZHANG, X. FENG, X. YU, T. JIN, M. BAO,* Y. YAMAMOTO* (DALIAN UNIVERSITY OF TECHNOLOGY, P. R. OF CHINA AND TOHOKU UNIVERSITY, SENDAI, JAPAN) Chemoselective Reduction of α,β -Unsaturated Aldehydes Using An Unsupported Nanoporous Gold Catalyst *Chem. Commun.* **2014**, *50*, 14401–14404. ### Chemoselective Reduction of α,β -Unsaturated Aldehydes with AuNPore **Significance:** Nanoporous gold (AuNPore) catalyzed the 1,2-reduction of α , β -unsaturated aldehydes **1** with triethylsilane. The reduction was carried out in the presence of water and triethylamine to give the corresponding allyl alcohols **2** in 42–78% yield with 82:18 to 100:0 (**2/3**) chemoselectivity. Comment: Previously, the authors reported the AuNPore-catalyzed chemoselective reduction of imines with dimethylphenylsilane (*Org. Lett.* **2014**, *16*, 2558). In the reduction of cinnamyl aldehyde, the catalytic activity of AuNPore was superior to that of Au₃₀Ag₇₀ alloy, homogeneous AuCl(Ph₃P)/Bu₃P, and AuCl/IPr·HCI. ICP-MS analysis showed that no gold content was leached from the catalyst during the reaction. SYNFACTS Contributors: Yasuhiro Uozumi, Fumie Sakurai Synfacts 2015, 11(1), 0098 Published online: 15.12.2014 DOI: 10.1055/s-0034-1379712; Reg-No.: Y14214SF F. ZHANG, Y. WEI, X. WU, H. JIANG, W. WANG,* H. LI* (SHANGHAI NORMAL UNIVERSITY, P. R. OF CHINA AND UNIVERSITY OF NEW MEXICO, ALBUQUERQUE, USA) Hollow Zeolitic Imidazolate Framework Nanospheres as Highly Efficient Cooperative Catalysts for [3+3] Cycloaddition Reactions J. Am. Chem. Soc. 2014, 136, 13963-13966. ### A Zeolitic Imidazolate Framework Catalyst for [3+3] Cycloadditions **Significance:** The authors developed a hollow-structured zeolitic imidazolate framework (ZIF-8-H) nanosphere as a catalyst for [3+3] cycloadditions. ZIF-8-H was prepared via complexation of carboxylic groups on the surface of nano-PS (\emptyset = 400 nm) with zinc ions and 2-methylimidazole, followed by subsequent removal of the PS nanosphere by extraction with toluene. The reaction of 1,3-dicarbonyl compounds **1** with α , β -unsaturated aldehydes **2** proceeded in the presence of ZIF-8-H to give the pyranyl heterocycles **3** with up to 89.0% conversion and 99.9% selectivity. **Comment:** The reaction of 1,3-hexanedione and 3-methyl-2-butenal proceeded in the presence of ZIF-8-H with 89.0% conversion, whereas the use of bulk ZIF-8 showed lower catalytic efficiency (73.2% conversion). Toluene vapor adsorption isotherm showed that ZIF-8-H absorbed toluene to a cage-filling level with a high adsorption amount (6.34 mmol/g). Based on this observation, the authors discussed that the limiting aperture size of ZIF-8-H exceeded the kinetic diameter of toluene (0.61 nm), which is much larger than the reported window size of ZIF-8 (0.34 nm). Category Polymer-Supported Synthesis **Key words** zeolitic imidazolate framework hollow-structured nanospheres [3+3] cycloaddition zinc SYNFACTS Contributors: Yasuhiro Uozumi, Yoichi M. A. Yamada, Takuma Sato Synfacts 2015, 11(1), 0099 Published online: 15.12.2014 DOI: 10.1055/s-0034-1379726; Reg-No.: Y15314SF Polymer-Supported Synthesis #### Key words cobalt oxide magnetite hydroacylation azodicarboxylates J. M. PÉREZ, D. J. RAMÓN* (UNIVERSIDAD DE ALICANTE, SPAIN) Cobalt-Impregnated Magnetite as General Heterogeneous Catalyst for the Hydroacylation Reaction of Azodicarboxylates Adv. Synth. Catal. 2014, 356, 3039-3047. # Hydroacylation of Azodicarboxylates with Aldehydes Using CoO-Fe₃O₄ **Significance:** Magnetite-supported cobalt oxide (CoO–Fe $_3$ O $_4$) was prepared by mixing CoCl $_2$ ·6H $_2$ O and Fe $_3$ O $_4$ in water followed by treatment with NaOH (eq. 1). CoO–Fe $_3$ O $_4$ catalyzed the hydroacylation of azodicarboxylates **1** with aldehydes **2** in trichloroethylene to afford the hydroacylated products **3** in up to 99% yield (eq. 2). **Comment:** In the formation of **3a**, the catalyst was recovered by magnetic separation and reused nine times with slight loss of its catalytic activity. The catalytic activity of CoO–Fe₃O₄ was superior to that of the other metal oxides supported on Fe₃O₄ (NiO–Fe₃O₄, CuO–Fe₃O₄, Ru₂O₃–Fe₃O₄, Rh₂O₃–Fe₃O₄, PdO–Fe₃O₄, Ag₂O/Ag–Fe₃O₄, WO_x–Fe₃O₄, OsO–Fe₃O₄, PtO/PtO₂–Fe₃O₄, Au₂O₃/Au–Fe₃O₄, NiO/Cu–Fe₃O₄, PdO/Cu–Fe₃O₄) and unsupported CoO. **SYNFACTS Contributors:** Yasuhiro Uozumi, Noboru Kobayashi Synfacts 2015, 11(1), 0100 Published online: 15.12.2014 **DOI:** 10.1055/s-0034-1379716; **Reg-No.:** Y14614SF **Synthesis** **Key words** arylation indoles **Polymer-Supported** diaryliodonium salts palladium catalysis J. MALMGREN, A. NAGENDIRAN, C.-W. TAI, J. E. BÄCKVALL,* B. OLOFSSON* (STOCKHOLM UNIVERSITY, SWEDEN) C2-Selective Arylation of Indoles with Heterogeneous Nanopalladium and Diaryliodonium Salts *Chem. Eur. J.* **2014**, *20*, 13531–13535. # A Heterogeneous Palladium Catalyst for C2-Selective Arylation of Indoles **Significance:** Pd⁰-AmP-MCF constitutes of silica-based mesocellular foam (MCF) functionalized with aminopropylsilane (for the preparation, see: M. Shakeri et al. *Chem. Eur. J.* **2011**, *17*, 13269). Pd⁰-AmP-MCF (palladium particles ø: 2–3 nm) catalyzed the C2-selective arylation of indoles **1** and substituted diaryliodonium tetrafluoroborates **2** to give the corresponding indole derivatives in 65–99% yield (15 examples). Comment: The reactions of an electron-rich indole (3b), an N-methylated indole (3d), para-alkyl-substituted salts (3f,g), or an electron-deficient CF₃-substituted salt (3j) afforded high yields, whereas an N-benzylated indole (3e) or a naphthyl salt (3i) resulted in lower yield. ICP-OES analysis showed 0.6 ppm of palladium leaching from the reaction mixture (3a). **SYNFACTS Contributors:** Yasuhiro Uozumi, Yoichi M. A. Yamada, Rikako Ishii Synfacts 2015, 11(1), 0101 Published online: 15.12.2014 **DOI:** 10.1055/s-0034-1379722; **Reg-No.:** Y14914SF Polymer-Supported Synthesis #### Key words borylation cyclopropanes cyclobutanes silica gel supported phosphines iridium R. MURAKAMI, K. TSUNODA, T. IWAI, M. SAWAMURA* (HOKKAIDO UNIVERSITY, SAPPORO, JAPAN) Stereoselective C-H Borylations of Cyclopropanes and Cyclobutanes with Silica-Supported Monophosphane-Ir Catalysts Chem. Eur. J. 2014, 20, 13127-13131. # C-H Borylation of Cyclopropanes and Cyclobutanes with Silica-SMAP-Iridium **Significance:** The heteroatom-directed C–H borylation of cyclopropanes and cyclobutanes with bis(pinacolato)diboron was carried out in the presence of [Ir(OMe)(cod)]₂ and silica-SMAP to give the corresponding borylated products in up to 168% yield based on bis(pinacolato)diboron (eqs. 1 and 2). **Comment:** In the reaction of 2-cyclopropylpyridine with bis(pinacolato)diboron, the catalytic activity of the silica-SMAP-iridium system was superior to that of the other ligand-iridium systems (for example, 0% yield for Ph-SMAP-Ir, Me₃P-Ir, *t*-Bu₃P-Ir, Ph₃P-Ir, XPhos-Ir, dtbpy-Ir, and 2,9-Me₂Phen-Ir). **SYNFACTS Contributors:** Yasuhiro Uozumi, Go Hamasaka Synfacts 2015, 11(1), 0102 Published online: 15.12.2014 **DOI:** 10.1055/s-0034-1379710; **Reg-No.:** Y14014SF S.-W. CHEN, Z.-C. ZHANG, M. MA, C.-M. ZHONG,* S.-G. LEE* (NORTHWEST A&F UNIVERSITY, YANGLING, P. R. OF CHINA AND EWHA WOMANS UNIVERSITY, SEOUL, REPUBLIC OF KOREA) Supported Ruthenium–Carbene Catalyst on Ionic Magnetic Nanoparticles for Olefin Metathesis *Org. Lett.* **2014**, *16*, 4969–4971. ### Olefin Metathesis with Ruthenium-Carbene Supported on Iron Oxide **Significance:** The Grubbs–Hoveyda ruthenium–carbene complex supported on ionic magnetic nanoparticles (Ru@IMNPs) was prepared by immobilization of imidazolium chloride **1** onto Fe₃O₄ **2**, anion exchange with NaPF₆, and metathesis with ruthenium complex **3** (eq. 1). Ru@IMNPs catalyzed the ring-closing metathesis of dienes to give the corresponding cyclic olefins in 90–99% yield (eq. 2). The cross-metathesis of methyl acrylate with olefins using Ru@IMNPs also proceeded with high *E*-selectivity (eq. 3). **SYNFACTS Contributors:** Yasuhiro Uozumi, Takao Osako Synfacts 2015, 11(1), 0103 Published online: 15.12.2014 **DOI:** 10.1055/s-0034-1379713; **Reg-No.:** Y14314SF **Comment:** In the ring-closing metathesis of *N*,*N*-diallyl tosylamide, the catalyst was recovered magnetically and reused five times without significant loss of catalytic activity (6th run: 96% conversion), although ICP-MS analysis showed significant leaching of the ruthenium species into the product (a loss of 54% of the ruthenium content of the fresh catalyst) during the initial three runs of the recycling experiment. Category Polymer-Supported Synthesis Key words carbenes iron oxide olefin metathesis ruthenium 103 Polymer-Supported Synthesis #### Key words triazoles hydroamination gold nanoparticles heterogeneous catalysis V. A. SOLOVYEVA, K. B. VU, Z. MERICAN, R. SOUGRAT, V. O. RODIONOV* (KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, THUWAL, KINGDOM OF SAUDI ARABIA) One-Pot Synthesis of Au@SiO₂ Catalysts: A Click Chemistry Approach *ACS Comb. Sci.* **2014**, *16*, 513–517. # Hydroamination of Alkynes Using Amphiphiles-Based Au@SiO₂ $$R^{1} + R^{2} + R^{2}$$ $$135 \text{ °C, } 16 \text{ h, argon}$$ $$R^{2}$$ $$1a R^{2} = H, 97\% \text{ conversion}$$ $$1b R^{2} = 4-\text{OMe, } 100\% \text{ conversion}$$ $$1c R^{2} = 4-\text{Me, } 88\% \text{ conversion}$$ $$1f R^{2} = 4-\text{Me, } 99\% \text{ conversion}$$ $$1i **Significance:** The porous Au@SiO₂ catalyst was prepared from a gold precursor and a TEOS solution in the presence of cinchonidine-based triazole amphiphiles. The hydroamination of alkynes was carried out with Au@SiO₂ to give the corresponding imine products **1a-n** in up to 99% conversion. **Comment:** The turnover number of Au@SiO₂ was 1604 for the formation of **1b**. The catalyst was characterized by cryo-TEM, XPS, UV/Vis, zeta potential, and ICP-OES analyses. SYNFACTS Contributors: Yasuhiro Uozumi, Yoichi M. A. Yamada, Heeyoel Baek Synfacts 2015, 11(1), 0104 Published online: 15.12.2014 DOI: 10.1055/s-0034-1379718; Reg-No.: Y14814SF **Synthesis** Key words MCM-41 2-aminobenzothiazoles copper complexes heterogeneous catalysis **Polymer-Supported** H. ZHAO, W. HE, R. YAO, M. CAI* (JIANGXI NORMAL UNIVERSITY, NANCHANG AND GUANGDONG PHARMACEUTICAL UNIVERSITY, GUANGZHOU, P. R. OF CHINA) Heterogeneous Copper-Catalyzed Cascade Three-Component Reaction of Amines, Carbon Disulfide and 2-Iodoanilines Leading to 2-Aminobenzothiazoles *Adv. Synth. Catal.* **2014**, *356*, 3092–3098. # Preparation of 2-Aminobenzothiazoles with an MCM-41-Cu Catalyst #### Preparation of the MCM-41-supported copper complex catalyst: $$R^{1} \underbrace{ \begin{array}{c} \text{NH}_{2} \\ \text{I} \end{array}}_{\text{I}} + CS_{2} + HNR^{2}R^{3} \underbrace{ \begin{array}{c} \text{MCM-41-2N-CuCl (10 mol\%)} \\ \text{K}_{2}CO_{3}, \text{ DMF, 110 °C, 12 h} \end{array}}_{\text{R}^{1}} R^{1} \underbrace{ \begin{array}{c} \text{II} \\ \text{II} \end{array}}_{\text{S}} NR^{2}R^{3}$$ #### Selected results: **Significance:** The mesoporous catalyst MCM-41-2N-CuCl was prepared by immobilization of a 3-(2-aminoethylamino)propyl moiety on MCM-41 with CuCl. The reaction of 2-iodoanilines, carbon disulfide (CS₂) and amines with 10 mol% of MCM-41-2N-CuCl gave the corresponding 2-aminobenzothiazoles **1a-q** in up to 95% yield. **Comment:** The MCM-41-2N-CuCl catalyst was recovered by filtration and reused nine times to give **1a** (5th reuse: 94% yield, 9th reuse: 93% yield). ICP-AES analysis revealed that no copper species leached into the reaction mixture. SYNFACTS Contributors: Yasuhiro Uozumi, Yoichi M. A. Yamada, Heeyoel Baek Synfacts 2015, 11(1), 0105 — Published online: 15.12.2014 DOI: 10.1055/s-0034-1379717; Reg-No.: Y14714SF Polymer-Supported Synthesis #### Key words 1,2,3-triazoles sodium azide terminal alkynes polystyrene resin B. MOVASSAGH,* N. REZAEI (K. N. TOOSI UNIVERSITY OF TECHNOLOGY, TEHRAN, IRAN) Polystyrene Resin-Supported CuI–Cryptand-22 Complex: A Highly Efficient and Reusable Catalyst for Three-Component Synthesis of 1,4-Disubstituted 1,2,3-Triazoles Under Aerobic Conditions in Water *Tetrahedron* **2014**, *70*, 8885–8892. ## Click Reaction Using Polymer-Supported Cul-Cryptand-22 $$R^{1}-N_{3}$$ + = R^{2} $\xrightarrow{PS-C22-Cul \\ (0.3 \text{ mol}\% \text{ Cu})}{H_{2}\text{O, r.t., 10 h}}$ $\xrightarrow{R^{1}}$ N N (2) ### Selected examples: **Significance:** A polystyrene resin supported Culcryptand-22 complex (PS–C22–Cul) was prepared by mixing chloromethylated polystyrene with cryptand-22 in diethyl ether, followed by the complexation with Cul in ethanol (eq. 1). PS–C22–Cul catalyzed the click reaction of azides with terminal alkynes (eq. 2, method A) or the one-pot three-component reaction from alkyl halides, sodium azide, and terminal alkynes (eq. 3, method B) to give the corresponding 1,2,3-triazoles in up to 99% yield. SYNFACTS Contributors: Yasuhiro Uozumi, Shiguang Pan Synfacts 2015, 11(1), 0106 Published online: 15.12.2014 DOI: 10.1055/s-0034-1379715; Reg-No.: Y14514SF **Comment:** The PS–C22–Cul complex was characterized by FT-IR, EDX, SEM, XPS, and TG-DTA analysis. In both methods A and B for synthesizing 1-benzyl-4-phenyl-1*H*-1,2,3-triazole, the catalyst was recovered by filtration and reused three times. ### A. Z. WILCZEWSKA,* I. MISZTALEWSKA (UNIVERSITY OF BIALYSTOK, POLAND) Direct Synthesis of Imidazolinium Salt on Magnetic Nanoparticles and Its Palladium Complex Application in the Heck Reaction Organometallics 2014, 33, 5203-5208. # The Mizoroki-Heck Reaction Using a Palladium-NHC Complex Supported on MNP **Significance:** A palladium–NHC complex was immobilized on magnetic nanoparticles (Pd–NHC@MNP) according to the sequences shown above. Pd–NHC@MNP catalyzed the Mizoroki–Heck reaction of terminal alkenes with aryl halides to afford the corresponding internal alkenes in up to 96% yield (eq. 2). **Comment:** The characterization of Pd–NHC@MNP was performed by TEM, EDX, IR, TGA, DSC, ¹H NMR spectroscopy, and ETAAS analyses. In the Mizoroki–Heck reaction of butyl acrylate with iodobenzene, the catalyst was recovered magnetically and reused four times without loss of its catalytic activity (1st run: 85% yield, 3rd run: 87% yield, 5th run: 85% yield). **SYNFACTS Contributors:** Yasuhiro Uozumi, Aya Tazawa Synfacts 2015, 11(1), 0107 Published online: 15.12.2014 **DOI:** 10.1055/s-0034-1379723; **Reg-No.:** Y15014SF Category Polymer-Supported Synthesis Key words N-heterocyclic carbenes magnetic nanoparticles Mizoroki-Heck reaction palladium 2015 © THIEME STUTTGART • NEW YORK Polymer-Supported Synthesis #### Key words mesoporous copper(I) oxide photocatalytic aza-Henry reaction visible light oxvaen J. WANG, J. MA, X. LI, Y. LI, G. ZHANG, F. ZHANG, X. FAN* (TIANJIN UNIVERSITY, P. R. OF CHINA) Cu₂O Mesoporous Spheres with a High Internal Diffusion Capacity and Improved Catalytic Ability for the aza-Henry Reaction Driven by Visible Light Chem. Commun. 2014, 50, 14237-14240. ### Visible-Light-Promoted aza-Henry Reaction Using Mesoporous Cu₂O **Significance:** Mesoporous copper(I) oxide spheres with different pore sizes (5 nm for SP-Cu₂O and 15 nm for LP-Cu₂O) were prepared and applied to the visible-light-promoted aza-Henry reaction. The reaction of N-aryl tetrahydroisoquinolines $\mathbf{1}$ with nitroalkanes $\mathbf{2}$ was carried out in the presence of LP-Cu₂O and molecular oxygen under the irradiation of blue LEDs to afford the corresponding coupling products $\mathbf{3}$ in 83–90% yield. The reaction without catalyst gave $\mathbf{3a}$ in only 5% yield under otherwise similar conditions. **Comment:** The catalysts were characterized by SEM, TEM, XRD, and N₂ adsorption–desorption analyses. For the formation of **3a**, LP-Cu₂O was recovered by centrifugation and reused four times without significant loss of catalytic activity. SEM observation of LP-Cu₂O after the fifth run showed no change of its morphology. The preparation of mesoporous Cu₂O spheres with small pore size was previously reported by Shang, Zhang and Guo (*J. Mater. Chem.* **2012**, *22*, 856). SYNFACTS Contributors: Yasuhiro Uozumi, Yoichi M. A. Yamada, Aya Ohno Synfacts 2015, 11(1), 0108 Published online: 15.12.2014 DOI: 10.1055/s-0034-1379725; Reg-No.: Y15214SF MD. R. ISLAM, P. AHAMED, N. HARAGUCHI, S. ITSUNO* (TOYOHASHI UNIVERSITY OF TECHNOLOGY, JAPAN) Synthesis of Chiral Polymers Containing Thioetherified Cinchonidinium Repeating Units and Their Application to Asymmetric Catalysis Tetrahedron: Asymmetry 2014, 25, 1309-1315. ### Asymmetric α -Benzylation with Cinchonidium Salt Based Polymers **Significance:** Chiral polymers **3** and **5** were prepared from cinchonidine dimers **1** (eqs. 1 and 2). All polymers showed high catalytic performance in the asymmetric α -benzylation of N-diphenylmethylene glycine *tert*-butyl ester with benzyl bromide (eq. 3, 77–95% yield, 81–92% ee). **Comment:** The polymer catalysts were recovered by filtration and reused without loss of catalytic performance. The reaction also took place at –40 °C to give the product with improved ee (with **3bc**: 24 h, 83% yield, 95% ee). The catalytic activity and the stereoselectivity observed with the polymeric catalysts **3** and **5** were comparable to those obtained with the homogeneous catalysts **1**. **SYNFACTS Contributors:** Yasuhiro Uozumi, Makoto Nagaosa Synfacts 2015, 11(1), 0109 Published online: 15.12.2014 **DOI:** 10.1055/s-0034-1379724; **Reg-No.:** Y15114SF asymmetric α -benzylation Category **Synthesis** **Key words** **Polymer-Supported** cinchonidium salts chiral polymers Synthesis #### **Key words** **N-formylation** orthoformates amines molybdate sulfuric acid B. KARAMI,* M. FARAHI, F. PAM (YASOUJ UNIVERSITY, IRAN) A Green Protocol for the N-Formylation of Amines Using Molybdate Sulfuric Acid as a Reusable Solid Catalyst Tetrahedron Lett. 2014, 55, 6292-6296. ### **N-Formylation of Amines Using Molybdate Sulfuric Acid** #### Selected examples: 70% yield (R = Me) 80% yield (R = Me) Significance: Molybdate sulfuric acid (MSA) catalyzed the N-formylation of amines with orthoformates to give the corresponding formamide derivatives in up to 95% yield (19 examples). In the Nformylation of aniline with triethyl orthoformate, the catalyst was recovered by filtration and reused three times with a slight loss of catalytic activity (1st reuse: 87% yield, 3rd reuse: 80% yield). Comment: The catalytic activity of MSA was superior to that of the other catalysts (ZnO, ZrOCl₂, MgBr₂, ZnCl₂, and H₂SO₄). The authors have reported previously the preparation of molybdate sulfuric acid and its application to the synthesis of phenazines and quinoxalines (Polycycl. Aromat. Compd. 2011, 31, 97).