Visible-Light-Promoted aza-Henry Reaction Using Mesoporous Cu₂O

Significance: Mesoporous copper(I) oxide spheres with different pore sizes (5 nm for SP-Cu₂O and 15 nm for LP-Cu₂O) were prepared and applied to the visible-light-promoted aza-Henry reaction. The reaction of N-aryl tetrahydroisoquinolines 1 with nitroalkanes 2 was carried out in the presence of LP-Cu₂O and molecular oxygen under the irradiation of blue LEDs to afford the corresponding coupling products 3 in 83–90% yield. The reaction without catalyst gave 3a in only 5% yield under otherwise similar conditions.

Comment: The catalysts were characterized by SEM, TEM, XRD, and N₂ adsorption–desorption analyses. For the formation of 3a, LP-Cu₂O was recovered by centrifugation and reused four times without significant loss of catalytic activity. SEM observation of LP-Cu₂O after the fifth run showed no change of its morphology. The preparation of mesoporous Cu₂O spheres with small pore size was previously reported by Shang, Zhang and Guo (J. Mater. Chem. 2012, 22, 856).

SYNFACTS Contributors: Yasuhiro Uozumi, Yoichi M. A. Yamada, Aya Ohno

SYNFACTS 2015, 11(1), 0108 Published online: 15.12.2014 DOI: 10.1055/s-0034-1379725; Reg-No.: Y15214SF

Category: Polymer-Supported Synthesis

Key words: mesoporous copper(I) oxide, photocatalytic aza-Henry reaction, visible light, oxygen

Cu₂O Mesoporous Spheres with a High Internal Diffusion Capacity and Improved Catalytic Ability for the aza-Henry Reaction Driven by Visible Light