Gategory

Polymer-Supported Synthesis

Key words

triazoles
hydroamination
gold nanoparticles
heterogeneous catalysis

1a $\mathrm{R}^{2}=\mathrm{H}, 97 \%$ conversion 1b $\mathrm{R}^{2}=4-\mathrm{OMe}, 100 \%$ conversion 1c $R^{2}=4-\mathrm{Me}, 88 \%$ conversion

1g $\mathrm{R}^{2}=\mathrm{H}, 98 \%$ conversion 1h $R^{2}=4-\mathrm{OMe}, 99 \%$ conversion $1 i R^{2}=4-\mathrm{Me}, 99 \%$ conversion

1d $R^{2}=H, 100 \%$ conversion
1e $R^{2}=4-\mathrm{OMe}, 100 \%$ conversion 1f $R^{2}=4-\mathrm{Me}, 92 \%$ conversion

$\mathrm{Au@SiO} \mathbf{S}_{2}$ catalyst

1m R $\mathrm{R}^{2}=\mathrm{H}, 93 \%$ conversion
1n $\mathrm{R}^{2}=4-\mathrm{OMe}, 100 \%$ conversion

Significance: The porous ${\mathrm{Au} @ \mathrm{SiO}_{2} \text { catalyst was }}^{\text {a }}$ prepared from a gold precursor and a TEOS solution in the presence of cinchonidine-based triazole amphiphiles. The hydroamination of alkynes was carried out with $\mathrm{Au} @ \mathrm{SiO}_{2}$ to give the corresponding imine products 1a-n in up to 99% conversion.

Comment: The turnover number of $\mathrm{Au@SiO}_{2}$ was 1604 for the formation of $\mathbf{1 b}$. The catalyst was characterized by cryo-TEM, XPS, UV/Vis, zeta potential, and ICP-OES analyses.

[^0]
[^0]: sYnfacts Contributors: Yasuhiro Uozumi, Yoichi M. A. Yamada, Heeyoel Baek
 Synfacts 2015, 11(1), 0104 Published online: 15.12.2014
 DOI: 10.1055/s-0034-1379718; Reg-No.: Y14814SF

