Synlett 2015; 26(03): 412-415
DOI: 10.1055/s-0034-1379698
letter
© Georg Thieme Verlag Stuttgart · New York

A Study of Aerobic Photooxidation with a Continuous-Flow Microreactor

Yoshitomo Nagasawa
a   Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan   Email: itoha@gifu-pu.ac.jp
,
Katsuya Tanba
b   Dexerials Corporation, 30 Kaganosakai, Takaraeniida, Nakada-cho, Tome-shi, Miyagi, 987-0622, Japan
,
Norihiro Tada
a   Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan   Email: itoha@gifu-pu.ac.jp
,
Eiji Yamaguchi
a   Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan   Email: itoha@gifu-pu.ac.jp
,
Akichika Itoh*
a   Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan   Email: itoha@gifu-pu.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 29 September 2014

Accepted after revision: 12 November 2014

Publication Date:
07 January 2015 (online)


Abstract

We report the development of an aerobic photooxidation process with a continuous-flow microreactor that can form a slug flow region on the chip. The approach solved several problems raised by ­using batch systems.

 
  • References and Notes

  • 1 Larock RC. Comprehensive Organic Transformations . Wiley-VCH; New York: 1999. 2nd ed

    • For recent examples of oxidation with molecular oxygen, see:
    • 2a Ryland BL, Stahl SS. Angew. Chem. Int. Ed. 2014; 53: 8824
    • 2b Niu M, Hou Y, Ren S, Wu W, Marsh KN. Green Chem. 2014; in press; DOI: 10.1039/C4GC01440E
    • 2c Lin HY, Fang D, Xing R. RSC Adv. 2014; 4: 51140
    • 2d Zhao S, Liu C, Guo Y, Xiao J.-C, Chen Q.-Y. J. Org. Chem. 2014; 79: 8926

      For recent main examples, see:
    • 3a Yamaguchi T, Nobuta T, Tada N, Miura T, Nakayama T, Uno B, Itoh A. Synlett 2014; 25: 1453
    • 3b Fujiya A, Kariya A, Nobuta T, Tada N, Miura T, Itoh A. Synlett 2014; 25: 884
    • 3c Kariya A, Yamaguchi T, Nobuta T, Tada N, Miura T, Itoh A. RSC Adv. 2014; 4: 13191
    • 3d Nobuta T, Fujiya A, Yamaguchi T, Tada N, Miura T, Itoh A. RSC Adv. 2013; 3: 10189
    • 3e Yamaguchi T, Nobuta T, Kudo Y, Hirashima S, Tada N, Miura T, Itoh A. Synlett 2013; 24: 607
    • 3f Tada N, Ishigami T, Cui L, Ban K, Miura T, Itoh A. Tetrahedron Lett. 2013; 54: 256
    • 3g Cui L, Furuhashi S, Tachikawa Y, Tada N, Miura T, Itoh A. Tetrahedron Lett. 2013; 54: 162
    • 3h Matsusaki Y, Yamaguchi T, Tada N, Miura T, Itoh A. Synlett 2012; 23: 2059
    • 3i Tada N, Cui L, Ishigami T, Ban K, Miura T, Uno B, Itoh A. Green Chem. 2012; 14: 3007
    • 3j Tada N, Ikebata Y, Nobuta T, Hirashima S, Miura T, Itoh A. Photochem. Photobiol. Sci. 2012; 11: 616
    • 3k Nobuta T, Fujiya A, Tada N, Miura T, Itoh A. Synlett 2012; 23: 2975
    • 3l Tada N, Hattori K, Nobuta T, Miura T, Itoh A. Green Chem. 2011; 13: 1669
    • 3m Kanai N, Nakayama H, Tada N, Itoh A. Org. Lett. 2010; 12: 1948
    • 3n Hirashima S, Nobuta T, Tada N, Miura T, Itoh A. Org. Lett. 2010; 12: 3645
  • 4 Shidpour R, Vossoughi M, Simchi AR, Micklich M. Ind. Eng. Chem. Res. 2014; 53: 11973

    • For examples of photochemistry with flow microreactor, see:
    • 5a Knowles JP, Elliott LD, Booker-Milburn KI. Beilstein J. Org. Chem. 2012; 8: 2025
    • 5b Oelgemöller M, Shvydkiv O. Molecules 2011; 16: 7522
    • 5c Schepper SC. K, Heynderickx GJ, Martin GB. Chem. Eng. J. 2008; 138: 349
    • 5d Coyle EE, Oelgemöller M. Photochem. Photobiol. Sci. 2008; 7: 1313
    • 5e Carofiglio T, Donnola P, Maggini M, Rossetto M, Rossi E. Adv. Synth. Catal. 2008; 350: 2815
    • 5f Matsushita N, Ohba N, Suzuki T, Ichimura T, Tanibata H, Murata T. Pure Appl. Chem. 2007; 79: 1959
    • 5g Meyer S, Tietze D, Rau S, Schäfer B, Kreisel G. J. Photochem. Photobiol., A 2007; 186: 248

      For recent examples of gas–liquid reactions with flow microreactor, see:
    • 6a Gross U, Koos P, O’Brien M, Polyzos A, Ley SV. Eur. J. Org. Chem. 2014; 6418
    • 6b Nagaki A, Takahashi Y, Yoshida J. Chem. Eur. J. 2014; 20: 7931
    • 6c Yao C, Dong Z, Zhao Y, Chen G. AIChE J. 2014; 60: 1132
    • 6d Park CP, Maurya RA, Lee JH, Kim D.-P. Lab Chip 2011; 11: 1941
    • 7a Bourne RA, Han X, Poliakoff M, George MW. Angew. Chem. Int. Ed. 2009; 48: 5322
    • 7b Wootton RC. R, Fortt R, de Mello AJ. Org. Process Res. Dev. 2002; 6: 187
    • 8a Kopetzki D, Lévesque F, Seeberger PH. Chem. Eur. J. 2013; 19: 5450
    • 8b Lévesque F, Seeberger PH. Angew. Chem. Int. Ed. 2012; 51: 1706
    • 9a Sanchis A, Johnson GW, Jensen A. Int. J. Multiphase Flow 2011; 37: 358
    • 9b Maurya RA, Park CP, Kim D.-P. Beilstein J. Org. Chem. 2011; 7: 1158
    • 9c Ghaini A, Mescher A, Agar DW. Chem. Eng. Sci. 2011; 66: 1168
    • 9d Echeverri LF, Acharya S, Rein PW. Int. J. Heat Mass Transfer 2010; 53: 2284
    • 9e Kinoshita H, Kaneda S, Fujii T, Oshima M. Lab Chip 2007; 7: 338
  • 10 Schepper SC. K, Heynderickx GJ, Martin GB. Chem. Eng. J. 2008; 138: 349
  • 11 Typical Procedure with Flow Microreactor: A solution of the substrate (0.3 mmol) and photosensitizer (0.1 equiv) in EtOAc (0.6 mL) was introduced into one of the channels by using a syringe pump. Simultaneously, molecular oxygen (0.1 MPa) was introduced into the second channel from a gas cylinder controlled by a mass flowmeter. Both streams were mixed in the channel of the reactor chip to form a slug flow. Light (375 nm) from an LED array (sum: 11.4 W) was used to irradiate the slug flow from a distance of 1 mm from the chip surface The product was collected in a vial tube and analyzed by 1H NMR spectroscopy.