Enantioselective Synthesis of \(\beta \)-Hydroxy Sulfones via Transfer Hydrogenation

Significance: Chiral \(\beta \)-hydroxy sulfones are useful building blocks in organic synthesis, as the \(\alpha \)-position can easily be functionalized and the sulfonyl group easily be removed or transformed. In the present report, the authors describe a one-pot approach to chiral \(\beta \)-hydroxy sulfones, starting from \(\alpha \)-bromo ketones and involving transfer hydrogenation.

Comment: A variety of products could be formed in high yield and high to excellent enantioselectivity. Interestingly, both alkyl and aryl substituents can be tolerated at the \(R_1 \) and \(R_2 \) positions, with aryl groups giving superior results. Through kinetic studies, the authors demonstrate that nucleophilic substitution followed by transfer hydrogenation is the dominant sequence.