Category

Synthesis of Natural Products and Potential Drugs

Key words

sarpagine alkaloids peraksine haloboration palladium catalysis vinylation R. V. EDWANKAR, C. R. EDWANKAR, J. R. DESCHAMPS, J. M. COOK* (UNIVERSITY OF WISCONSIN-MILWAUKEE AND NAVAL RESEARCH LABORATORY, WASHINGTON, D.C., USA)

General Strategy for Synthesis of C-19 Methyl-Substituted *Sarpagine/Macroline/Ajmaline* Indole Alkaloids Including Total Synthesis of 19(*S*),20(*R*)-Dihydroperaksine, 19(*S*),20(*R*)-Dihydroperaksine-17-al, and Peraksine *J. Org. Chem.* **2014**, 79, 10030–10048.

Total Synthesis of (+)-Dihydroperaksine-17-al, (+)-Dihydroperaksine, and (+)-Peraksine

Significance: The sarpagine alkaloids (+)-19(S),20(R)-dihydroperaksine-17-al, (+)-19(S),20(R)-dihydropraksine (both isolated from *Rauwolfia serpentina*) and (+)-peraksine (isolated from *Rauwolfia perakensis*) have in common the structural feature of a β -methyl group at C-19. Cook and co-workers report the first enantio- and stereospecific synthesis of all three alkaloids.

 SYNFACTS Contributors: Erick M. Carreira, Adrien Joliton

 Synfacts 2015, 11(1), 0010
 Published online: 15.12.2014

 DOI: 10.1055/s-0034-1379677; Reg-No.: C07514SF

Comment: After introduction of the chiral methyl group by N-alkylation, the pentacyclic core was formed by haloboration followed by a palladium-catalyzed intramolecular α -vinylation of the ketone. Common intermediate **F** was then converted into (+)-peraksine, (+)-dihydroperaksine-17-al, and (+)-dihydropraksine by a specific acetal protection and hydroboration—oxidation sequence.