Synthesis of \((\textit{\text{--}})\text{-}N\text{-methylwelwitindolinone B isothiocyanate}\)

Significance: The family of the welwitindolinone natural products represents a formidable challenge for synthetic chemists. Structurally, the majority of these molecules consist of an indolinone imbedded into a \([4.3.1]\)bicycle. While several efforts towards the synthesis of congeners have been reported to date, the challenge of \((\textit{\text{--}})\text{-}N\text{-methylwel witindolinone B isothiocyanate}\) has not been met. This compound is unique due to the alkyl chloride, which has been found to undergo various side reactions. The approach presented by Garg and co-workers relies on a chlorinative oxabicyclic ring opening culminating in the first total synthesis of the target molecule.

Comment: The synthesis commenced with ketone \(A\), which was generated using an elegant indoline cyclization (\textit{J. Am. Chem. Soc. 2011}, 133, 15797; \textit{Synfacts} 2011, 7, 1281). Diastereoselective reduction, followed by ring closure, generated oxabicycle \(B\). The subsequent \(\text{BCl}_3\)-mediated chlorinative ring opening proved to be efficient only when the vinyl group was first converted into an aldehyde. Carbamate \(E\), obtained in a few steps, underwent nitrene C–H insertion under conditions previously reported. Finally, carbamate cleavage, oxidation, dehydration, and sulfuration delivered \((\textit{\text{--}})\text{-}N\text{-methylwelwitindolinone B isothiocyanate}\).