Category

Synthesis of Materials and Unnatural Products

Key words

bromination

triptycene tris(thiadiazoles) B. KOHL, L. C. OVER, T. LOHR, M. VASYLYEVA, F. ROMINGER, M. MASTALERZ* (RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG, GERMANY)

Selective Even-Numbered Bromination of Triptycene Tris(thiadiazoles)

Org. Lett. 2014, 16, 5596-5599.

An Unusual Regioselective Di-, Tetra-, and Hexa-Bromination

Reaction Conditions				Isolated Yield (%)				
Additive (equiv)	Br ₂ (equiv)	Time (h)	Temp (°C)	1	2	3	4	
Fe (12)	150	14	40	34	31	15	_a	
Fe (6)	34	2	55	18	32	18	6	
Fe (12)	600	140	55	-	-	9	67	
HBr (22)	50	140	24	-	-	-	94	
FeCl ₃ ·6H ₂ O (6)	50	55	26	-	-	-	97	

^a Approximately 7% of hexabromotriptycene has been formed, but not isolated and purified.

Significance: Mastalerz and co-workers report an unusual even-numbered bromination of triptycene tris(thiadiazoles), yielding regioselectively dibromo-, tetrabromo-, and hexabromotriptycenes with two bromines each on the same phenyl ring. These brominated compounds will be useful in the synthesis of π -conjugated polymers of intrinsic microporosity and small electron acceptors.

Comment: Given that the C–C bond lengths of the phenyl rings are alternating, and hence the phenyl rings exhibit more olefinic than aromatic character from X-ray single crystal structure of **1**, the mechanism for this unusual even-numbered bromination is proposed to involve 1,4-addition of Br₂, followed by subsequent re-aromatization of the phenyl ring by oxidation by Br₂ or FeBr₃. It is also proposed that this 1,4-addition–oxidation sequence is favored over electrophilic aromatic substitution. Furthermore, to demonstrate the utility of these monomers in the synthesis of conjugated polymers, dibromotriptycene **2** has been shown to undergo facile Suzuki–Miyaura cross-coupling.

SYNFACTS Contributors: Timothy M. Swager, Wen Jie Ong Synfacts 2015, 11(1), 0040 Published online: 15.12.2014 **DOI:** 10.1055/s-0034-1379672; **Reg-No.:** S13114SF