X. FENG,* K. MÜLLEN* ET AL. (MAX PLANCK INSTITUTE FOR POLYMER RESEARCH, MAINZ AND FREE UNIVERSITY BERLIN, GERMANY; UNIVERSITY OF LEUVEN, BELGIUM; FOM INSTITUTE AMOLF, AMSTERDAM, THE NETHERLANDS; AARHUS UNIVERSITY, DENMARK; MANCHESTER UNIVERSITY, UK)

Bottom-Up Synthesis of Liquid-Phase-Processable Graphene Nanoribbons with Near-Infrared Absorption

ACS Nano 2014, 8, 11622–11630.

A Diels–Alder Approach to Graphene Nanoribbon Precursors

Significance: Bottom-up approaches to graphene nanoribbons (GNRs) have been limited by the short length of nanoribbons produced (<50 nm) or the requirement for metal surfaces. The authors report a bottom-up approach to the synthesis of longer (>100 nm), structurally defined GNRs using an \(AB\)-type Diels–Alder polymerization to form nanoribbon precursors that can be planarized to GNRs by oxidative cyclodehydrogenation with FeCl\(_3\).

Comment: Despite the formation of multiple regioisomers after the Diels–Alder polymerization of asymmetrical monomer 7, upon planarization, all isomers of 8 yielded an identical GNR structure (9). Polymerization of 7 was carried out both in solution and melt, with melt yielding GNR precursors of significantly higher \(M_w\) (230,000–550,000 g/mol versus 42,000–78,000 g/mol for solution polymerization).

SYNFACTS Contributors: Timothy M. Swager, Kathleen R. White

Synfacts 2015, 11(1), 0036 Published online: 15.12.2014
DOI: 10.1055/s-0034-1379666; Reg-No.: S12514SF