X. Feng,* K. Müllem* et al. (Max Planck Institute for Polymer Research, Mainz and Free University Berlin, Germany; University of Leuven, Belgium; FOM Institute AMOLF, Amsterdam, the Netherlands; Aarhus University, Denmark; Manchester University, UK) Bottom-Up Synthesis of Liquid-Phase-Processable Graphene Nanoribbons with Near-Infrared Absorption

ACS Nano 2014, 8, 11622–11630.

A Diels–Alder Approach to Graphene Nanoribbon Precursors

Significance: Bottom-up approaches to graphene nanoribbons (GNRs) have been limited by the short length of nanoribbons produced (<50 nm) or the requirement for metal surfaces. The authors report a bottom-up approach to the synthesis of longer (>100 nm), structurally defined GNRs using an AB-type Diels–Alder polymerization to form nanoribbon precursors 8 that can be planarized to GNRs 9 by oxidative cyclodehydrogenation with FeCl3.

Comment: Despite the formation of multiple regioisomers after the Diels–Alder polymerization of asymmetrical monomer 7, upon planarization, all isomers of 8 yielded an identical GNR structure (9). Polymerization of 7 was carried out both in solution and melt, with melt yielding GNR precursors of significantly higher Mw (230,000–550,000 g/mol versus 42,000–78,000 g/mol for solution polymerization).

SYNFACTS Contributors: Timothy M. Swager, Kathleen R. White

Synfacts 02012015, 11(1), 0036 Published online: 15.12.2014

DOI: 10.1055/s-0034-1379666; **Reg-No.** S12514SF

Category

Synthesis of Materials and Unnatural Products

Key words

graphene nanoribbons
cyclodehydrogenation
Diels–Alder reaction
near-infrared absorption