G. A. MøLander,* J. AMani, S. R. Wisniewski (University of Pennsylvania, Philadelphia, USA)

Accessing 2-(Hetero)arylmethyl-, -allyl-, and -propargyl-2,1-borazaronaphthalenes: Palladium-Catalyzed Cross-Couplings of 2-(Chloromethyl)-2,1-borazaronaphthalenes

Accessing 2-(Hetero)arylmethyl-, -allyl-, and -propargyl-2,1-borazaronaphthalenes

Significance: The authors expanded the electrophilic nature of 2-(chloromethyl)-2,1-borazaronaphthalene. In addition to substitution reactions, now also several metal-catalyzed reactions were performed. Potassium (hetero)aryl and alkenyl trifluoroborates as well as terminal alkynes were successfully used as nucleophiles.

Comment: Impressively, a wide variety of substituted azaborines were prepared starting from one common azaborinyl building block. This new methodology gives access to a whole library of pseudobenzylic-substituted azaborines.

Selected examples:

1. **B**_H**N**_{Cl}(Het)ArBF₃K₊
 - Pd₂dba₃ (1.25 mol%)
 - RuPhos (2.5 mol%)
 - Cs₂CO₃ (2.0 equiv)
 - PhMe–H₂O
 - 80 °C, 18 h
 - 80% yield

2. **B**_H**N**_{CO₂}M_e
 - 58% yield

3. **B**_H**N**_{67% yield}

4. **O**_{83% yield}

5. **N**_{79% yield}

SYNFACTS Contributors: Paul Knochel, Thomas Klatt

Syfacts 2015, 11(1), 0074 Published online: 15.12.2014
DOI: 10.1055/s-0034-1379655; Reg-No.: P15914SF