**Enantioselective Dearomatization of Indoles**

Significance: Bandini and co-workers report an enantioselective dearomatization of indoles. Using 1 to 10 mol% of chiral phosphoric acid catalyst, the desired 3,3-disubstituted indolenines are obtained in moderate to high yields and good to excellent enantioselectivities.

Comment: The authors developed an enantioselective electrophilic activation of allenamides, generating enantioenriched dearomatized 3,3-disubstituted indolenines as products. Additionally, a dearomatization–hydrogen transfer cascade was conducted. Performing the reaction in the presence of molecular sieves and Hantzsch ester, the corresponding indolines are obtained in good yields and with high diastereo- and enantioselectivities.

**Selected examples of dearomatization–hydrogen transfer cascade:**

- **NPhTs**
  - 51% yield, $\text{er}_{\text{trans}} = 99:1$
  - $\text{er}_{\text{cis}} = 91.9$
  - $\text{dr} = 18:1$

- **NPhTs**
  - 60% yield, $\text{er}_{\text{trans}} = 97.5:2.5$
  - $\text{er}_{\text{cis}} = 91:9$
  - $\text{dr} = 10:1$

- **NPhTs**
  - 49% yield, $\text{er}_{\text{trans}} = 99.5:0.5$
  - $\text{er}_{\text{cis}} = 96.7:3:3$
  - $\text{dr} = 15:1$

**Selected examples:**

- **NPhTs**
  - 51% yield, $\text{er} = 95.5:4.5$

- **NPhTs**
  - 87% yield, $\text{er} = 97.4$

- **NPhTs**
  - 69% yield, $\text{er} = 93.5:6.5$
  - Using (S)-cat.

- **NPhTs**
  - 60% yield, $\text{er} = 96.4$
  - Using (S)-cat.

- **NPhTs**
  - 64% yield, $\text{er} = 95.5:4.5$
  - Using (S)-cat.

**SYNFACTS Contributors:** Benjamin List, Lisa Kötzner

Synfacts 2015, 11(1), 0089 · Published online: 15.12.2014 DOI: 10.1055/s-0034-1379623; Reg-No.: B12614SF