A. VELIAN, M. NAVA, M. TEMPRADO, Y. ZHOU, R. W. FIELD, C. C. CUMMINS*
(MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, USA AND UNIVERSIDAD DE ALCALÁ, MADRID, SPAIN)

A Retro Diels–Alder Route to Diphosphorus Chemistry: Molecular Precursor Synthesis, Kinetics of P₂ Transfer to 1,3-Dienes, and Detection of P₂ by Molecular Beam Mass Spectrometry

Pass the P₂

Significance: Cummins and co-workers have developed a novel system for thermally transferring the diphosphorus molecule P₂ from a transannular diphosphorus bisanthracene adduct 4 to various 1,3-dienes via a retro-Diels–Alder reaction.

Comment: Treatment of 4 with platinum ethylene complex [(C₂H₄)Pt(PPh₃)₂] at room temperature furnishes the expected platinum diphosphorus complex (P₂)[Pt(PPh₃)₂], broadening the scope of this P₂ precursor to inorganic complexes.

Trapping reactions:

- **1,3-cyclohexadiene**
 - THF, heat
 - >90% yield (NMR)

- **1,3-cyclohexadiene**
 - n-hexane, heat
 - 69% yield

Key words
- retro-Diels–Alder reaction
- phosphorus
- fused ring systems

Category
- Synthesis of Materials and Unnatural Products

SYNFACTS Contributors: Timothy M. Swager, Sarah P. Luppino

SYNFACTS 2014, 10(12), 1261
Published online: 18.11.2014
DOI: 10.1055/s-0034-1379439; Reg-No.: S11814SF