A. Velian, M. Nava, M. Temprado, Y. Zhou, R. W. Field, C. C. Cummins*
(MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, USA AND UNIVERSIDAD DE ALCALÁ, MADRID, SPAIN)
A Retro Diels–Alder Route to Diphosphorus Chemistry: Molecular Precursor Synthesis, Kinetics of P₂ Transfer to 1,3-Dienes, and Detection of P₂ by Molecular Beam Mass Spectrometry

Pass the P₂

Significance: Cummins and co-workers have developed a novel system for thermally transferring the diphosphorus molecule P₂ from a transannular diphosphorus bisanthracene adduct 4 to various 1,3-dienes via a retro-Diels–Alder reaction.

Comment: Treatment of 4 with platinum ethylene complex [(C₂H₄)Pt(PPh₃)₂] at room temperature furnishes the expected platinum diphosphorus complex (P₂)[Pt(PPh₃)₂]₂, broadening the scope of this P₂ precursor to inorganic complexes.

Trapping reactions:

1. **MgCl₂·3THF**
 - THF, –78 °C
 - 50% yield

2. **AlCl₃**
 - CH₂Cl₂, thawing to r.t.
 - 65% yield

3. **LiAlH₄**
 - THF, thawing to r.t.
 - 86% yield

SYNFACTS Contributors: Timothy M. Swager, Sarah P. Luppino
Synfacts 2014, 10(12), 1261
Published online: 18.11.2014
DOI: 10.1055/s-0034-1379439; Reg-No.: S11814SF