A. VELIAN, M. NAVA, M. TEMPRADO, Y. ZHOU, R. W. FIELD, C. C. CUMMINS* (MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, USA AND UNIVERSIDAD DE ALCALÁ, MADRID, SPAIN)

A Retro Diels–Alder Route to Diphosphorus Chemistry: Molecular Precursor Synthesis, Kinetics of P$_2$ Transfer to 1,3-Dienes, and Detection of P$_2$ by Molecular Beam Mass Spectrometry

Pass the P$_2$

Significance: Cummins and co-workers have developed a novel system for thermally transferring the diphosphorus molecule P$_2$ from a transannular diphosphorus bisanthracene adduct 4 to various 1,3-dienes via a retro-Diels–Alder reaction.

Comment: Treatment of 4 with platinum ethylene complex [(C$_2$H$_4$)Pt(PPh$_3$)$_2$] at room temperature furnishes the expected platinum diphosphorus complex (P$_2$)[Pt(PPh$_3$)$_2$], broadening the scope of this P$_2$ precursor to inorganic complexes.