Pass the P₂

Significance: Cummins and co-workers have developed a novel system for thermally transferring the diphosphorus molecule P₂ from a transannular diphosphorus bisanthracene adduct 4 to various 1,3-dienes via a retro-Diels–Alder reaction.

Comment: Treatment of 4 with platinum ethylene complex ([C₂H₄]₂Pt[PPh₃]₂) at room temperature furnishes the expected platinum diphosphorus complex (P₂)[Pt(PPh₃)₂], broadening the scope of this P₂ precursor to inorganic complexes.

Trapping reactions:

1. **1,3-cyclohexadiene**
 - **THF, heat**
 - **>90% yield (NMR)**

2. **1,3-cyclohexadiene**
 - **n-hexane, heat**
 - **69% yield**

Key words
- retro-Diels–Alder reaction
- phosphorus
- fused ring systems