Synthesis 2014; 46(22): 3004-3023
DOI: 10.1055/s-0034-1379303
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Transition-Metal-Catalyzed Denitrogenative Transformations­ of 1,2,3-Triazoles and Related Compounds

Pazhamalai Anbarasan*
Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India   Fax: +91(44)22574202   Email: anbarasansp@iitm.ac.in
,
Dongari Yadagiri
Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India   Fax: +91(44)22574202   Email: anbarasansp@iitm.ac.in
,
Shanmugam Rajasekar
Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India   Fax: +91(44)22574202   Email: anbarasansp@iitm.ac.in
› Author Affiliations
Further Information

Publication History

Received: 30 August 2014

Accepted: 22 September 2014

Publication Date:
23 October 2014 (online)


Abstract

Suitably substituted electron-deficient 1,2,3-triazoles exist in equilibrium with their ring-opened α-diazoimine tautomers. This phenomenon was used to facilitate the generation of synthetically useful metallo azavinyl carbene intermediates. In this short review, we describe recent developments in the transition-metal-catalyzed decomposition of electron-deficient (annulated) 1,2,3-triazoles to form metallo azavinyl carbenes, and their application in the synthesis of highly functionalized nitrogen-based heterocycles and building blocks through various synthetic transformations, such as transannulation, cyclopropanations, insertion reactions, ylide formation/rearrangements, and ring expansions.

1 Introduction

2 Ring–Chain Isomerism

3 Synthesis of N-Sulfonyl-1,2,3-triazoles

4 Denitrogenative Transformations of 1,2,3-Triazoles

4.1 Transannulations with Nitriles and Alkynes

4.2 Transannulations with Alkenes or Carbonyl Compounds

4.3 Transannulations with (Hetero)cumulenes or 1,3-Dienes

4.4 Insertions into X–H or C–X bonds

4.5 Rearrangement/Ring Expansion

4.6 Miscellaneous Transformations

5 Summary and Outlook

 
  • References

  • 1 Ferreira SB, Sodero AC. R, Cardoso MF. C, Lima ES, Kaiser CR, Silva FP. Jr, Ferreira VF. J. Med. Chem. 2010; 53: 2364
  • 2 Cunha AC, Figueiredo JM, Tributino JL. M, Miranda AL. P, Castro HC, Zingali RB, Fraga CA. M, de Souza MC. B. V, Ferreira VF, Barreiro EJ. Bioorg. Med. Chem. 2003; 11: 2051
  • 3 da Silva FC, de Souza MC. B. V, Frugulhetti II. P, Castro HC, Souza SL. de O, de Souza TM. L, Rodrigues DQ, Souza AM. T, Abreu PA, Passamani F, Rodrigues CR, Ferreira VF. Eur. J. Med. Chem. 2009; 44: 373
  • 4 Boechat N, Ferreira VF, Ferreira SB, Ferreira ML. G, da Silva FC, Bastos MM, Costa MdosS, Lourenco MC. S, Pinto AC, Krettli AU, Aguiar AC, Teixeira BM, da Silva NV, Martins PR. C, Bezerra FA. F. M, Camilo AL. S, da Silva GP, Costa CC. P. J. Med. Chem. 2011; 54: 5988
  • 5 Biagi G, Calderone V, Giorgi I, Livi O, Scartoni V, Baragatti B, Martinotti E. Eur. J. Med. Chem. 2000; 35: 715
  • 6 Horne WS, Yadav MK, Stout CD, Ghadiri MR. J. Am. Chem. Soc. 2004; 126: 15366
  • 7 Valverde IE, Bauman A, Kluba CA, Vomstein S, Walter MA, Mindt TL. Angew. Chem. Int. Ed. 2013; 52: 8957
  • 8 Horne WS, Olsen CA, Beierle JM, Montero A, Ghadiri MR. Angew. Chem. Int. Ed. 2009; 48: 4718
  • 9 Elliott PI. P In Organometallic Chemistry . Vol. 39. Royal Society of Chemistry; Cambridge: 2014: 1
  • 10 Gilchrist TL, Gymer GE. Adv. Heterocycl. Chem. 1974; 16: 33
  • 11 Chattopadhyay B, Gevorgyan V. Angew. Chem. Int. Ed. 2012; 51: 862
  • 12 Gulevich AV, Gevorgyan V. Angew. Chem. Int. Ed. 2013; 52: 1371
  • 13 Davies HM. L, Alford JS. Chem. Soc. Rev. 2014; 43: 5151
  • 14 Dimroth O. Justus Liebigs Ann. Chem. 1909; 364: 183
  • 15 Dimroth O, Michaelis W. Justus Liebigs Ann. Chem. 1927; 459: 39
  • 16 Grünanger P, Finzi PV, Scotti C. Chem. Ber. 1965; 98: 623
  • 17 Harmon RE, Stanley FJr, Gupta SK, Johnson J. J. Org. Chem. 1970; 35: 3444
  • 18 Hermes ME, Marsh FD. J. Am. Chem. Soc. 1967; 89: 4760
  • 19 Habraken CL, Erkelens C, Mellema JR, Cohen-Fernandes P. J. Org. Chem. 1984; 49: 2197
  • 20 Rosin YA, Vorob’eva EA, Morzherin YY, Yakimov AC, Dehaen W, Bakulev VA. Mendeleev Commun. 1998; 8: 240
  • 21 Morzherin YY, Rozin YA, Savel’eva EA, Bakulev VA. Chem. Heterocycl. Compd. (Engl. Transl.) 2003; 39: 168
  • 22 Rozin YA, Vorob’ova EA, Morzherin YY, Bakulev VA. Chem. Heterocycl. Compd. (Engl. Transl.) 2001; 37: 294
  • 23 Yamauchi M, Miura T, Murakami M. Heterocycles 2010; 80: 177
  • 24 Keith JM. J. Org. Chem. 2010; 75: 2722
  • 25 Meldal M, Tornøe CW. Chem. Rev. 2008; 108: 2952
  • 26 Yoo EJ, Chang S. Curr. Org. Chem. 2009; 13: 1766
  • 27 Hein JE, Fokin VV. Chem. Soc. Rev. 2010; 39: 1302
  • 28 Kim SH, Park SH, Choi JH, Chang S. Chem. Asian J. 2011; 6: 2618
  • 29 Yoo EJ, Ahlquist M, Kim SH, Bae I, Fokin VV, Sharpless KB, Chang S. Angew. Chem. Int. Ed. 2007; 46: 1730
  • 30 Raushel J, Fokin VV. Org. Lett. 2010; 12: 4952
  • 31 Liu Y, Wang X, Xu J, Zhang Q, Zhao Y, Hu Y. Tetrahedron 2011; 67: 6294
  • 32 Meza-Aviña ME, Patel MK, Lee CB, Dietz TJ, Croatt MP. Org. Lett. 2011; 13: 2984
  • 33 Ramachary DB, Ramakumar K, Narayana VV. Chem. Eur. J. 2008; 14: 9143
  • 34 Wang L, Peng S, Danence LJ. T, Gao Y, Wang J. Chem. Eur. J. 2012; 18: 6088
  • 35 Horneff T, Chuprakov S, Chernyak N, Gevorgyan V, Fokin VV. J. Am. Chem. Soc. 2008; 130: 14972
  • 36 Zibinsky M, Fokin VV. Org. Lett. 2011; 13: 4870
  • 37 Miura T, Yamauchi M, Murakami M. Chem. Commun. 2009; 1470
  • 38 Chattopadhyay B, Gevorgyan V. Org. Lett. 2011; 13: 3746
  • 39 Shi Y, Gevorgyan V. Org. Lett. 2013; 15: 5394
  • 40 Chuprakov S, Kwok SW, Zhang L, Lercher L, Fokin VV. J. Am. Chem. Soc. 2009; 131: 18034
  • 41 Grimster N, Zhang L, Fokin VV. J. Am. Chem. Soc. 2010; 132: 2510
  • 42 Culhane JC, Fokin VV. Org. Lett. 2011; 13: 4578
  • 43 Alford JS, Davies HM. L. Org. Lett. 2012; 14: 6020
  • 44 Kwok SW, Zhang L, Grimster NP, Fokin VV. Angew. Chem. Int. Ed. 2014; 53: 3452
  • 45 Cloke JB. J. Am. Chem. Soc. 1929; 51: 1174
  • 46 Alford JS, Spangler JE, Davies HM. L. J. Am. Chem. Soc. 2013; 135: 11712
  • 47 Kim C.-E, Park S, Eom D, Seo B, Lee PH. Org. Lett. 2014; 16: 1900
  • 48 Rajasekar S, Anbarasan P. J. Org. Chem. 2014; 79: 8428
  • 49 Ran R.-Q, He J, Xiu S.-D, Wang K.-B, Li C.-Y. Org. Lett. 2014; 16: 3704
  • 50 Parr BT, Green SA, Davies HM. L. J. Am. Chem. Soc. 2013; 135: 4716
  • 51 Spangler JE, Davies HM. L. J. Am. Chem. Soc. 2013; 135: 6802
  • 52 Xing Y, Sheng G, Wang J, Lu P, Wang Y. Org. Lett. 2014; 16: 1244
  • 53 Miura T, Funakoshi Y, Murakami M. J. Am. Chem. Soc. 2014; 136: 2272
  • 54 Büchner E, Curtius T. Ber. Dtsch. Chem. Ges. 1885; 18: 2377
  • 55 Zibinsky M, Fokin VV. Angew. Chem. Int. Ed. 2013; 52: 1507
  • 56 Miura T, Tanaka T, Hiraga K, Stewart SG, Murakami M. J. Am. Chem. Soc. 2013; 135: 13652
  • 57 Schultz EE, Sarpong R. J. Am. Chem. Soc. 2013; 135: 4696
  • 58 Miura T, Hiraga K, Biyajima T, Nakamuro T, Murakami M. Org. Lett. 2013; 15: 3298
  • 59 Chuprakov S, Kwok SW, Fokin VV. J. Am. Chem. Soc. 2013; 135: 4652
  • 60 Parr BT, Davies HM. L. Angew. Chem. Int. Ed. 2013; 52: 10044
  • 61 Shang H, Wang Y, Tian Y, Feng J, Tang Y. Angew. Chem. Int. Ed. 2014; 53: 5662
  • 62 Kim S, Mo J, Kim J, Ryu T, Lee PH. Asian J. Org. Chem. 2014; 3: 926
  • 63 Chuprakov S, Malik JA, Zibinsky M, Fokin VV. J. Am. Chem. Soc. 2011; 133: 10352
  • 64 Yadagiri D, Anbarasan P. Org. Lett. 2014; 16: 2510
  • 65 Rajagopal B, Chou C.-H, Chung C.-C, Lin P.-C. Org. Lett. 2014; 16: 3752
  • 66 Yang J.-M, Zhu C.-Z, Tang X.-Y, Shi M. Angew. Chem. Int. Ed. 2014; 53: 5142
  • 67 Alford JS, Davies HM. L. J. Am. Chem. Soc. 2014; 136: 10266
  • 68 Park S, Yong W.-S, Kim S, Lee PH. Org. Lett. 2014; 16: 4468
  • 69 Miura T, Biyajima T, Fujii T, Murakami M. J. Am. Chem. Soc. 2012; 134: 194
  • 70 Miura T, Tanaka T, Biyajima T, Yada A, Murakami M. Angew. Chem. Int. Ed. 2013; 52: 3883
  • 71 Chuprakov S, Worrell BT, Selander N, Sit RK, Fokin VV. J. Am. Chem. Soc. 2014; 136: 195
  • 72 Miura T, Nakamuro T, Hiraga K, Murakami M. Chem. Commun. 2014; 50: 10474
  • 73 Miura T, Tanaka T, Yada A, Murakami M. Chem. Lett. 2013; 42: 1308
  • 74 Yadagiri D, Anbarasan P. Chem. Eur. J. 2013; 19: 15115
  • 75 Boyer A. Org. Lett. 2014; 16: 1660
  • 76 Fu J, Shen H, Chang Y, Li C, Gong J, Yang Z. Chem. Eur. J. 2014; 20: 12881
  • 77 Medina F, Besnard C, Lacour J. Org. Lett. 2014; 16: 3232
  • 78 Ma X, Pan S, Wang H, Chen W. Org. Lett. 2014; 16: 4554
  • 79 Miura T, Funakoshi Y, Morimoto M, Biyajima T, Murakami M. J. Am. Chem. Soc. 2012; 134: 17440
  • 80 Selander N, Worrell BT, Fokin VV. Angew. Chem. Int. Ed. 2012; 51: 13054
  • 81 Liu R, Zhang M, Winston-McPherson G, Tang W. Chem. Commun. 2013; 49: 4376
  • 82 Selander N, Fokin VV. J. Am. Chem. Soc. 2012; 134: 2477
  • 83 Selander N, Worrell BT, Chuprakov S, Velaparthi S, Fokin VV. J. Am. Chem. Soc. 2012; 134: 14670
  • 84 Jung DJ, Jeon HJ, Kim JH, Kim Y, Lee S.-g. Org. Lett. 2014; 16: 2208
  • 85 Lee DJ, Shin J, Yoo EJ. Chem. Commun. 2014; 50: 6620
  • 86 Miura T, Funakoshi Y, Tanaka T, Murakami M. Org. Lett. 2014; 16: 2760
  • 87 Chen K, Zhu Z.-Z, Zhang Y.-S, Tang X.-Y, Shi M. Angew. Chem. Int. Ed. 2014; 53: 6645
  • 88 Lee DJ, Han HS, Shin J, Yoo EJ. J. Am. Chem. Soc. 2014; 136: 11606
  • 89 Nakamura I, Nemoto T, Shiraiwa N, Terada M. Org. Lett. 2009; 11: 1055
  • 90 Chuprakov S, Hwang FW, Gevorgyan V. Angew. Chem. Int. Ed. 2007; 46: 4757
  • 91 Chuprakov S, Gevorgyan V. Org. Lett. 2007; 9: 4463