Synlett 2014; 25(18): 2609-2612
DOI: 10.1055/s-0034-1379204
letter
© Georg Thieme Verlag Stuttgart · New York

Highly Efficient Diastereoselective Synthesis of Azabicyclo[2.2.2]octanes

Abdolali Alizadeh*
a   Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran   Fax: +98(21)88006544   Email: aalizadeh@modares.ac.ir   Email: abdol_alizad@yahoo.com
,
Vahideh Sadeghi
a   Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran   Fax: +98(21)88006544   Email: aalizadeh@modares.ac.ir   Email: abdol_alizad@yahoo.com
,
Fahimeh Bayat
a   Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran   Fax: +98(21)88006544   Email: aalizadeh@modares.ac.ir   Email: abdol_alizad@yahoo.com
,
Long-Guan Zhu
b   Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 10 August 2014

Accepted after revision: 01 September 2014

Publication Date:
07 October 2014 (online)


Abstract

A one-pot, diastereoselective synthesis of diverse azabicyclo[2.2.2]octanes from readily available starting materials is reported. The key strategy relies on creation of 2-aminoprop-1-ene-1,1,3-tricarbonitrile through dimerization of malononitrile which undergoes nucleophilic attack on dibenzalacetone at three sites leading to bicyclo[2.2.2]octanes.

 
  • References and Notes

    • 1a Kuehne ME, Marko I. Syntheses of Vinblastine-Type Alkaloids. In The Alkaloids: Antitumor Bisindole Alkaloids from Catharanthus roseus (L.). Vol. 37. Brossi A, Suffness M. Academic Press; San Diego: 1990: 77-131
    • 1b Popik P, Skolnick P. Pharmacology of Ibogaine and Ibogaine-Related Alkaloids, In The Alkaloids: Chemistry and Biology . Vol. 52. Cordell GA. Academic Press; San Diego: 1999: 197-231
    • 1c Glick SD, Maisonneuve IM, Szumlinski KK. Mechanisms of Action of Ibogaine: Relevance to Putative Therapeutic Effects and Development of a Safer Iboga Alkaloid Congener. In The Alkaloids. Vol. 56. Alper KR, Glick SD, Cordell GA. Academic Press; San Diego: 2001: 39-53
    • 2a Kaufman TS, Rúveda EA. Angew. Chem. Int. Ed. 2005; 44: 854
    • 2b Nicoloau KC, Snyder SA. Classics in Total Synthesis II: More Targets, Strategies, Methods . Wiley-VCH; Weinheim: 2003. Chap. 1
    • 2c Turner RB, Woodward RB. The Chemistry of the Cinchona Alkaloids, In The Alkaloids. Vol. 3. Manske RH. F. Chap. 16 Academic Press; New York: 1953
    • 2d Grethe G, Uskokovic MR In The Chemistry of Heterocyclic Compounds . Sexton JE. Wiley-Interscience; New York: 1983. Part 4, Vol. 23 279
    • 3a Wishka D, Walker D, Yates K, Reitz S, Jia S, Myers J, Olson K, Jacobsen E, Wolfe M, Groppi V, Hanchar AJ, Thornburgh BA, Cortes-Burgos LA, Wong EH. F, Staton BA, Raub TJ, Higdon NR, Wall TM, Hurst RS, Walters RR, Hoffmann WE, Hajos M, Franklin S, Carey G, Gold LH, Cook KK, Sands SB, Zhao SX, Soglia JR, Kalgutkar AS. J. Med. Chem. 2006; 49: 4425
    • 3b Mazurov A, Klucik J, Miao L, Phillips TY, Seamans A, Schmitt JD, Hauser TA, Johnson RT. Jr, Miller C. Bioorg. Med. Chem. Lett. 2005; 15: 2073
    • 4a Nakano H, Tsugawa N, Takahashi K, Okuyama Y, Fujita R. Tetrahedron 2006; 62: 10879
    • 4b Kouklovsky C, Pouilhes A, Langlois Y. J. Am. Chem. Soc. 1990; 112: 6672
    • 4c Matsumura Y, Nakamura Y, Maki T, Onomura O. Tetrahedron Lett. 2000; 41: 7685
    • 4d Marazano C, Yannic Y, Mehmandoust M, Das BC. Tetrahedron Lett. 1990; 31: 1995
  • 5 Rassat A, Rey P. Tetrahedron 1972; 28: 741
  • 6 Dandapani S, Duduta M, Panek JS, Porco JA. Jr. Org. Lett. 2007; 9: 3849
  • 7 Larouche-Gauthier R, Bélanger G. Org. Lett. 2008; 10: 4501
  • 8 Cuthbertson JD, Godfrey AA, Taylor RJ. K. Tetrahedron Lett. 2011; 52: 2024
  • 9 Thompson W, Young SD, Phillips BT, Munson P, Whitter W, Liverton N, Dieckhaus C, Butcher J, McCauley JA, McIntyre CJ, Layton ME, Sanderson PE. US 7452893 B2, 2008
    • 11a Alizadeh A, Feizabadi M, Bayat F, Zhu LG. Synlett 2014; 25: 1267
    • 11b Alizadeh A, Sedighian H, Bayat F. Synlett 2014; 25: 389
    • 11c Alizadeh A, Rezvanian A, Bayat F. Helv. Chim. Acta 2014; 97: 532
    • 11d Alizadeh A, Ghanbaripour R, Zhu LG. Tetrahedron 2014; 70: 2048
    • 11e Alizadeh A, Ghanbaripour R. Synth. Commun. 2014; 44: 1635
    • 11f Alizadeh A, Bayat F. Helv. Chim. Acta 2014; 97: 694
  • 12 A mixture of malononitrile (1 mmol) and NaOH (2 mmol) was stirred at 50 °C for 30 min, after this time dibenzalacetone (1, 1 mmol) and piperidine (one drop) was added and stirred for another 2 h. Upon completion, as monitored by TLC, the mixture was filtered, and the precipitate was washed with EtOH (4 mL) to afford the pure product 2af. 2-{4-Cyano-1-hydroxy-5,8-diphenyl-2-azabicyclo[2.2.2]oct-3-yliden}malononitrile (2a) White powder; yield 0.33 g (89%); mp 195 °C. IR (KBr): 3379 (NH), 3031 (OH), 2245, 2186 and 2151 (CN), 1542 and 1447 (Ar) cm–1. 1H NMR (300 MHz, DMSO-d 6): δ = 1.56–1.61 (m, 1 H, CH2), 1.85 (dd, 2 J HH = 12.6 Hz, 3 J HH = 6.3 Hz, 1 H, CH), 1.96 (dd, 2 J HH = 12.6 Hz, 3 J HH = 6.3 Hz, 1 H, CH2), 3.11 (dd, 2 J HH = 11.6 Hz, 3 J HH = 6.1 Hz, 1 H, CH2), 3.25 (dd, 2 J HH = 10.3 Hz, 3 J HH = 5.9 Hz, 1 H, CH2), 3.30–3.35 (m, 1 H, CH), 4.33 (s, 1 H, OH), 5.64 (s, 1 H, NH), 7.03 (d, 3 J HH = 6.4 Hz, 2 H, 2 × CH ortho of Ph), 7.17–7.25 (m, 3 H, 3 × CH of Ph), 7.31–7.48 (m, 5 H, 5 × CH of Ph). 13C NMR (75 MHz, DMSO-d 6): δ = 35.78 and 41.46 (2 × CH2), 42.38 [C(CN)2], 45.09 (2 × CH), 46.42 (C4), 84.87 (C1), 118.03 (CN), 123.6 (2 × CN), 126.9 (CH para of Ph), 127.52 (CH para of Ph), 128.04 (2 CH ortho of Ph), 128.10 (2 × CH ortho of Ph), 128.65 (2 × CH meta of Ph), 130.10 (2 × CH meta of Ph), 138.07 (C ipso ), 142.15 (C ipso ), 159.95 (C3). MS (EI, 70 eV): m/z = 307, 220, 185, 147, 128, 104, 91, 77, 51. Anal. Calcd for C23H18N4O: C, 75.39; H, 4.95; N, 15.29. Found: C, 75.36; H, 4.97; N, 15.30. Crystal Data for 2a C46H38N8O5Na2 (CCDC 1016275): M W = 828.82, a = 15.9057(10) Å, b = 15.8824(11) Å, c = 16.6277(11) Å, α = 90.00° β = 90.00°, γ = 90.00°, V = 4200.5(5) Å3, Z = 4, D c = 1.311mg m–3, F(000) = 1728, radiation, Mo Kα (λ = 0.71073 Å), 2.84 ≤ 2θ ≤ 25.04, intensity data were collected at 295(2) K with a Bruker APEX area-detector diffractometer, and employing ω/2θ scanning technique, in the range of –17 ≤ h ≤ 18, –17 ≤ k ≤ 18, –16 ≤ l ≤ 19; the structure was solved by a direct method, all nonhydrogen atoms were positioned and anisotropic thermal parameters refined from 3225 observed reflections with R (into) = 0.0811 by a full-matrix least-squares technique converged to R = 0.0706 and wR2 = 0.1985 [I > 2σ(I)]. 2-{5,8-Bis-(4-chlorophenyl)-4-cyano-1-hydroxy-2-azabicyclo[2.2.2]oct-3-yliden}malononitrile (2b) White powder; yield 0.37 g (85%); mp 255 °C. IR (KBr): 3422 (NH), 3046 (OH), 2193 and 2152 (CN), 1533 and 1491 (Ar) cm–1. 1H NMR (300 MHz, DMSO-d 6): δ = 1.56–1.58 (m, 1 H, CH2), 1.89–1.91 (m, 2 H, CH and CH2), 3.18–3.21 (m, 3 H, CH and CH2), 3.36 (s, 1 H, OH), 5.74 (s, 1 H, NH), 6.69–7.12 (m, 2 H, 2 × CH of Ar), 7.17–7.33 (m, 2 H, 2 × CH of Ar), 7.37–7.96 (m, 4 H, 4 × CH of Ar). 13C NMR (75 MHz, DMSO-d 6): δ = 35.93 and 38.31 (2 × CH2), 40.88 [C(CN)2], 45.60 (2 × CH), 45.84 (C4), 84.80 (C1), 117.96 (CN), 123.4 (2 × CN), 128.10 (4 × CH of Ar), 130.63 (2 × CH of Ar), 132.05 (2 × CH of Ar), 131.78 and 132.31 (2 × C ipso Cl), 137.14 and 140.88 (2 × C ipso ), 159.39 (C3). MS (EI, 70 eV): m/z = 304, 267, 239, 204, 179, 165, 137, 125, 101. Anal. Calcd for C23H16Cl2N4O: C, 63.46; H, 3.70; N, 12.87. Found: C, 63.44; H, 3.71; N, 12.89. 2-{5,8-Di-(3-bromophenyl)-4-cyano-1-hydroxy-2-azabicyclo[2.2.2]oct-3-yliden}malononitrile (2c) White powder; yield 0.37 g (70%); mp 181 °C. IR (KBr): 3414 (NH), 3023 (OH), 2187 and 2152 (CN), 1523 and 1454 (Ar) cm–1. 1H NMR (300 MHz, DMSO-d 6): δ = 1.58–1.60 (m, 1 H, CH2), 1.82–1.91 (m, 1 H, CH2), 1.91 (dd, 3 J HH = 6.6 Hz, 1 H, CH2), 2.42 (s, 1 H, OH), 3.00–3.05 (m, 1 H, CH2), 3.18–3.20 (m, 1 H, CH2), 3.34 (s, 1 H, CH), 5.64 (s, 1 H, NH), 6.89 (t, 3 J HH = 6.6 Hz, 1 H, CH of Ar), 6.91 (s, 1 H, CH of Ar), 7.03 (d, 3 J HH = 6.6 Hz, 2 H, 2 × CH of Ar), 7.19 (t, 3 J HH = 6.9 Hz, 1 H, CH of Ar), 7.21 (s, 1 H, CH of Ar), 7.32 (d, 3 J HH = 6.6 Hz, 2 H, 2 × CH of Ar). 13C NMR (75 MHz, DMSO-d 6): δ = 35.69 and 41.08 (2 × CH2), 42.5 [C(CN)2], 46.00 (2 × CH), 46.12 (C4), 84.86 (C1), 118.18 (CN), 123.70 (2 × CN), 128.57 (2 × CHof Ar), 128.65 (4 × CH of Ar), 129.98 (2 × CH of Ar), 135.14 (C ipso Br), 135.82 (C ipso Br), 136.57 (C ipso ), 139.30 (C ipso ), 159.84 (C3). MS (EI, 70 eV): m/z = 262, 247, 233, 219, 204, 170, 145, 115. Anal. Calcd for C23H16Br2N4O: C, 52.70; H, 3.08; N, 10.69. Found: C, 52.71; H, 3.11; N, 10.70. 2-{4-Cyano-1-hydroxy-5,8-di-(3-nitrophenyl)-2-azabicyclo[2.2.2]oct-3-yliden}malononitrile (2d) White powder; yield 0.40 g (87%); mp 230 °C. IR (KBr): 3471 (NH), 3375 (OH), 2184 and 2152 (CN), 1533 and 1460 (Ar), 1533 and 1352 (NO2) cm–1. 1H NMR (300 MHz, DMSO-d 6): δ = 1.68–1.70 (m, 1 H, CH2), 1.97–1.99 (m, 2 H, CH and CH2), 3.34–3.35 (m, 3 H, CH and CH2), 5.87 (s, 1 H, OH), 7.46 (d, 3 J HH = 11.9 Hz, 1 H, CH of Ar), 7.66–8.26 (m, 7 H, 7 × CH of Ar), 8.62 (s, 1 H, NH). 13C NMR (75 MHz, DMSO-d 6): δ = 21.9 and 36.19 (2 × CH2), 43.2 [C(CN)2], 45.54 (2 × CHAr), 46.12 (C4), 84.71 (C1), 118.30 (CN), 121.50 (2 × CN), 122.96 (2 × CH of Ar), 123 (CH of Ar), 125.26 (CH of Ar), 129.63 (2 × CH of Ar), 135.73 (CH of Ar), 136.50 (CH of Ar), 140.12 (C ipso ), 143.69 (C ipso ), 147.52 (2 × CH ipso NO2), 158.90 (C3). MS (EI, 70 eV): m/z = 176, 146, 128, 115, 102, 89. Anal. Calcd for C23H16N6O5: C, 60.53; H, 3.53; N, 18.41. Found: C, 60.56; H, 3.54; N, 18.40. 2-{4-Cyano-1-hydroxy-5,8-di-(4-methoxyphenyl)-2-azabicyclo[2.2.2]oct-3-yliden}malononitrile (2e) White powder; yield 0.32 g (76%); mp 230 °C. IR (KBr): 3487 (OH and NH), 2189 and 2152 (CN), 1542 and 1455 (Ar) cm–1. 1H NMR (300 MHz, DMSO-d 6): δ = 1.53–1.55 (m, 1 H, CH2), 1.78–1.80 (m, 1 H, CH), 1.87–1.92 (m, 1 H, CH2), 2.41 (t, 3 J HH = 11.6 Hz, 1 H, CH), 3.04 (dd, 3 J HH = 6.4 Hz, 1 H, CH2), 3.15 (dd, 3 J HH = 5.8 Hz, 1 H, CH2), 3.71 (s, 3 H, OMe), 3.77 (s, 3 H, OMe), 5.60 (s, 1 H, OH), 6.78 (d, 3 J HH = 8.6 Hz, 2 H, 2 × CH of Ar), 6.93 (d, 3 J HH = 8.4 Hz, 2 H, 2 × CH of Ar), 6.95 (d, 3 J HH = 8.3 Hz, 2 H, 2 × CH of Ar), 7.35 (d, 3 J HH = 8.5 Hz, 2 H, 2 × CH of Ar), 8.30 (s, 1 H, NH). 13C NMR (75 MHz, DMSO-d 6): δ = 35.67 (2 × CH2), 42.7 [C(CN)2], 45.51 (2 × CH), 46.45 (C4), 55.01 (2 × OMe), 79.16 (C1), 113.39 (4 × CH of Ar), 118.33 (CN), 123.72 (2 × CN), 129.70 (2 × CH of Ar), 130.05 (C ipso ), 131.15 (2 × CH of Ar), 134.31 (C ipso ), 158.08 (C ipso OMe), 158.51 (C ipso OMe), 159.74 (C3). MS (EI, 70 eV): m/z = 294, 186, 161, 145, 134, 121, 89. Anal. Calcd for C25H22N4O3: C, 70.41; H, 5.20; N, 13.14. Found: C, 70.41; H, 5.21; N, 13.13. 2-{4-Cyano-5,8-di-(3,4-dimethoxyphenyl)-1-hydroxy-2-azabicyclo[2.2.2]oct-3-yliden}malononitrile (2f) White powder; yield 0.43 g (88%); mp 230 °C. IR (KBr): 3421 (NH), 3250 (OH), 2189 and 2155 (CN), 1521 and 1446 (Ar) cm–1. 1H NMR (300 MHz, DMSO-d 6): δ = 1.54–1.56 (m, 1 H, CH2), 1.78–1.80 (m, 1 H, CH), 1.87–1.91 (m, 1 H, CH2), 2.40 (t, 3 J HH = 11.0 Hz, 1 H, CH), 3.04–3.06 (m, 1 H, CH2), 3.18–3.20 (m, 1 H, CH2), 3.31 (s, 1 H, OH), 3.69 (s, 3 H, OMe), 3.73 (s, 3 H, OMe), 3.78 (s, 6 H, 2 × OMe), 5.63 (s, 1 H, NH), 6.47 (d, 3 J HH = 7.6 Hz, 1 H, CH of Ar), 6.73 (d, 3 J HH = 7.6 Hz, 1 H, CH of Ar), 6.75 (s, 1 H, CH of Ar), 6.97 (d, 3 J HH = 7.6 Hz, 2 H, 2 × CH of Ar), 6.99 (s, 1 H, CH of Ar). 13C NMR (75 MHz, DMSO-d 6): δ = 35.85 and 41.25 (2 × CH2), 42.71 [C(CN)2], 45.87 (C4), 46.34 (2 × CH),55.06 (OMe), 55.24 (OMe), 55.38 (OMe), 55.56 (OMe), 84.83 (C1), 110.68, 111.24, 111.47 and 114.78 (4 × CH of Ar), 118.39 (CN), 121.24 and 121.54 (2 × CH of Ar), 123.74 (2 × CN), 130.46 (C ipso ), 134.81 (C ipso ), 147.73, 147.94, 148.10 and 148.44 (4 × C ipso OMe), 159.91 (C3). MS (EI, 70 eV): m/z = 358, 239, 191, 165, 151, 123, 107, 91. Anal. Calcd for C27H26N4O5: C, 66.66; H, 5.39; N, 11.52. Found: C, 66.64; H, 5.41; N, 11.53.