Base-Catalyzed Domino Double Michael Reactions of 1-Hydroxy-1,4-dien-3-ones and 2-Alkylidenemalononitriles: A Diastereoselective Route to Polysubstituted 3-Alkanoyl-4-hydroxycyclohex-3-enes

Yeong-Jiunn Janga,b,c
Yu-Shan Chenb
Chia-Jui Leea
Chi-Han Chenb
Wenwei Lin*a

a Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Tingchow Road, Taipei, Taiwan 11677, R.O.C.
wenweilin@ntnu.edu.tw
b School of Pharmacy, College of Pharmacy, China Medical University, No. 91 Hueh-Shih Road, Taichung, Taiwan 40402, R.O.C.
c Chinese Medicine Research and Development Center, China Medical University Hospital, No. 2 Yuh-Der Road, Taichung, Taiwan 40447, R.O.C.

Abstract

The diastereoselective synthesis of 2,6-disubstituted 3-alkanoyl-4-hydroxy-cyclohex-3-ene-1,1-dicarbonitrides has been developed through domino double Michael addition of 1,5-disubstituted 1-hydroxy-1,4-dien-3-ones to 2-alkylidenemalononitriles catalyzed by triethylamine. This simple domino process affords a variety of highly functionalized 3-alkanoyl-4-hydroxy-cyclohex-3-enes, some of which are not easily accessible using other methodologies, in moderate to good yields and excellent diastereoselectivity (dr > 95:5). Thus, the generality of this process and feasibility of introducing bioactive moieties make this reaction highly valuable in synthetic and medicinal chemistry.

Key words domino reaction, Michael addition, diastereoselectivity, cyclohexanone, curcumin

The construction of suitably functionalized cyclohexanones and related cyclohexanol skeletons plays a central role in many natural product syntheses due to their significant biological and pharmaceutical importance.1 In literature reports, many methods for the synthesis of substituted cyclohexanones have arisen from different approaches, such as [4+2] cycloaddition,2 rhodium(I)-catalyzed Pauson-Khand reaction,3 palladium-catalyzed intramolecular hydroalkylation,4 organocatalyzed domino annulation,5 and reductive tandem double Michael cascade,6a highlighting the continued interest in these frameworks from the synthetic community. In particular, domino processes are a powerful strategy for the construction of complex molecular skeletons by simultaneous formation of two or more bonds from simple materials in a one-pot manner.7 These benefits are of particular interest in pharmaceutical research for the construction of libraries of biologically active compounds. Therefore, developing novel domino reactions for the preparation of structurally diverse chemical libraries of polyfunctional compounds remains an interest for synthetic chemists. In this field, the usefulness of sequential Michael additions has been demonstrated,8 and domino Michael reactions have especially emerged as one of the most potent tools for the synthesis of various important cyclic building blocks during recent decades.

It is well documented that the Michael reaction of chalcones containing an activated alkene, such as nitroolefins and 1,5-disubstituted penta-1,4-dien-3-ones, with active methylene substrates, such as malononitrile and 1,3-dicarbonyl compounds, can be employed to prepare highly substituted cyclohexanones, while chalcones can serve both as the starting Michael donor and ending acceptor in domino double Michael reactions (Scheme 1, type 1) and bischalcones as the Michael acceptors twice in the reaction course (type 2). Recently, curcumin and its derivatives, also bis-chalcones, are reported to have chalcone-like behavior and they have been used to build substituted cyclohexanones with nitroolefins and chalcones (type 3).6b,c Although, there are several reports of the use of δ-aryl-β-oxo-γ,δ-unsaturated esters,9 to the best of our knowledge there are no reports in the literature of the highly functionalized syntheses of 3-alkanoyl-4-hydroxy-cyclohex-3-enes using 1-hydroxy-1,4-dien-3-ones as both the starting Michael donor and ending acceptor in domino double Michael reactions (type 4).

Herein, we disclose that only trans-isomers of 2,6-disubstituted 3-alkanoyl-4-hydroxy-cyclohex-3-ene-1,1-dicarbonitrides 3 are obtained in an efficient synthesis in good yields with excellent diastereoselectivity through the domino Michael addition of 1-hydroxy-1,4-dien-3-ones 1 with 2-alkylidenemalononitriles 2 catalyzed by triethylamine.

The starting materials, 1-hydroxy-1,4-dien-3-ones 1, were readily prepared by benzylation of methyl vinyl ketones and acid chlorides with lithium diisopropylamide.10a Initially, to identify the optimal reaction conditions, a representative reaction affording 3aaa was investigated in the
presence of different bases in dichloromethane at 30 °C. First of all, the reaction of 1aa with 1.2 equivalents of 2-benzylidenemalononitrile (2a), in the presence of piperidine as base catalyst (20 mol%) for two days, afforded an 85% NMR yield of 3aaa (Table 1, entry 1). The reaction was then performed in the presence of pyrrolidine and 4-(dimethylamino)pyridine, which led to a noticeable decrease in the yield of 3aaa to 72% and 70%, respectively, with 11% remaining of 1aa (entries 2 and 3). The reaction completely failed to occur when pyridine was used as the base (entry 4). The representative reaction was then carried out in the presence of triethylamine which led to slight enhancement in the yield to 91% with no remaining 1aa after 22 hours (entry 5). DABCO gave a moderate yield (69%), whereas a very poor yield was observed with 4-methylmorpholine (NMM) (entries 6 and 7). From these results, triethylamine emerged as the best choice of base for the domino reaction. Having determined the optimal base for the reaction, investigating the choice of a suitable solvent was performed. From the results in Table 1, dichloromethane was the best solvent giving the maximum yield of the product (entries 8–15 vs. 5). Incidentally, using a higher temperature (60 °C) in 1,2-dichloroethane or toluene resulted in a somewhat faster reaction rate or higher yield and this shows the low level of temperature dependence of the reactions (entries 10 vs. 9 or 14 vs. 13). The ideal conditions thus established were then applied to the synthesis of a library of novel 2,6-disubstituted 3-alkanoyl-4-hydroxycyclohexanones.
clohex-3-ene-1,1-dicarbonitriles \(3\) via the domino double Michael reactions of 1-hydroxy-1,4-dien-3-ones \(1\) and 2-alkyldienemalononitriles \(2\).

With the optimum conditions in hand, we explored the scope and limitation of this route to highly functionalized 3-alkanoyl-4-hydroxycyclohex-3-enes \(3\) by changing the substitution pattern of the \(R_1\) group in the methylenemalononitrile \(2\) to modify the nature of the double bond. The reactions proceeded with excellent diastereoselectivity, leading to the formation of the corresponding compound \(3\) as a single diastereomer. The trans configuration of the 2,6-disubstitution of \(3\) was confirmed by X-ray crystallography.\(^\text{12}\) These results are depicted in Table 2. Various electron-poor and electron-rich \(R_1\) substituents on 2-methylenemalononitriles \(2\) were well-tolerated in the reaction with \(1\). In general, reactions when \(R_1^1\) is an ortho- or para-electron-withdrawing group substituted phenyl (entries 4–7) or when \(R_1^1\) is a sterically hindered naphthyl substituent (entries 2 and 3) all give similar results to that of the unsubstituted 2-benzylidemalononitrile \(2a\); entry 1). However, when \(R_1^1\) was a para-electron-donating group substituted phenyl stoichiometric \(2h\) was consumed by excess \(1aa\) (entry 8). Heteroaryl motifs in \(2i-k\) were successfully incorporated, and the products were obtained in 60–79% yields within nine hours to four days (entries 9–11). Additionally, it should be noted that indoles and coumarins are valuable building blocks found in numerous biologically active natu-

Table 1 Condition Screening for the Formation of Cyclohexanone \(3\) via Domino Double Michael Reactions of \(1aa\) and \(2a\)^{

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Solvent</th>
<th>Temp (°C)</th>
<th>Time</th>
<th>Yield b (%)</th>
<th>(3aaa)</th>
<th>(1aa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>piperidine</td>
<td>CH₂Cl₂</td>
<td>30</td>
<td>2 d</td>
<td>85</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>pyrrolidine</td>
<td>CH₂Cl₂</td>
<td>30</td>
<td>2 d</td>
<td>72</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>DMAP</td>
<td>CH₂Cl₂</td>
<td>30</td>
<td>2 d</td>
<td>70</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>pyridine</td>
<td>CH₂Cl₂</td>
<td>30</td>
<td>2 d</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>Et₃N</td>
<td>CH₂Cl₂</td>
<td>30</td>
<td>22 h</td>
<td>91</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>NMM</td>
<td>CH₂Cl₂</td>
<td>30</td>
<td>2 d</td>
<td>8</td>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td>7</td>
<td>DABCO</td>
<td>CH₂Cl₂</td>
<td>30</td>
<td>2 d</td>
<td>69</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>Et₃N</td>
<td>CHCl₂</td>
<td>30</td>
<td>1 d</td>
<td>74</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>Et₃N</td>
<td>DCE</td>
<td>30</td>
<td>1 d</td>
<td>79</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>Et₃N</td>
<td>DCE</td>
<td>60</td>
<td>1 h</td>
<td>79</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>Et₃N</td>
<td>THF</td>
<td>30</td>
<td>1 d</td>
<td>58</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>Et₃N</td>
<td>MeCN</td>
<td>30</td>
<td>1 d</td>
<td>80</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>Et₃N</td>
<td>toluene</td>
<td>30</td>
<td>1 d</td>
<td>20</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>14</td>
<td>Et₃N</td>
<td>toluene</td>
<td>60</td>
<td>1 d</td>
<td>26</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>15</td>
<td>Et₃N</td>
<td>xylenes</td>
<td>30</td>
<td>1 d</td>
<td>21</td>
<td>66</td>
<td>66</td>
</tr>
</tbody>
</table>

*a Reaction conditions: \(1aa\) (0.25 mmol), \(2a\) (0.3 mmol, 1.2 equiv), catalyst (20 mol%), ACS-grade solvent (2 mL), 30 °C.
*b Diastereomeric ratio (dr) measured by \(^{1}H\) NMR analysis of the reaction mixture.

Table 2 Domino Double Michael Reactions of \(1aa\) and \(R_1\)-Substituted \(2a\)^{

<table>
<thead>
<tr>
<th>Entry</th>
<th>(R_1) (2a)</th>
<th>Time (h)</th>
<th>Yield b (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph (2a)</td>
<td>22</td>
<td>3aaa, 87</td>
</tr>
<tr>
<td>2</td>
<td>1-naphthyl (2b)</td>
<td>24</td>
<td>3aab, 85</td>
</tr>
<tr>
<td>3</td>
<td>2-naphthyl (2c)</td>
<td>16</td>
<td>3aac, 77</td>
</tr>
<tr>
<td>4</td>
<td>4-ClC₆H₄ (2d)</td>
<td>16</td>
<td>3aad, 80</td>
</tr>
<tr>
<td>5</td>
<td>4-BrC₆H₄ (2e)</td>
<td>16</td>
<td>3aee, 77</td>
</tr>
<tr>
<td>6</td>
<td>2-ClC₂H₄ (2f)</td>
<td>24</td>
<td>3aaf, 76</td>
</tr>
<tr>
<td>7</td>
<td>2-BrC₂H₄ (2g)</td>
<td>9</td>
<td>3aag, 75</td>
</tr>
<tr>
<td>8</td>
<td>4-ClC₂H₄ (2h)</td>
<td>96</td>
<td>3aah, 74</td>
</tr>
<tr>
<td>9</td>
<td>2-thienyl (2i)</td>
<td>96</td>
<td>3aal, 79</td>
</tr>
<tr>
<td>10</td>
<td>2-furyl (2j)</td>
<td>72</td>
<td>3aaj, 60</td>
</tr>
<tr>
<td>11</td>
<td>3-pyridyl (2k)</td>
<td>9</td>
<td>3aak, 72</td>
</tr>
<tr>
<td>12</td>
<td>(2l)</td>
<td>48</td>
<td>3aal, 62</td>
</tr>
<tr>
<td>13</td>
<td>(2m)</td>
<td>48</td>
<td>3aam, 60</td>
</tr>
<tr>
<td>14</td>
<td>i-Pr (2n)</td>
<td>72</td>
<td>3aan, 20</td>
</tr>
<tr>
<td>15</td>
<td>t-Bu (2o)</td>
<td>144</td>
<td>3aaø-keto, 37</td>
</tr>
<tr>
<td>16</td>
<td>(2p)</td>
<td>24</td>
<td>3aap, 66</td>
</tr>
</tbody>
</table>

*a Reaction conditions: \(1aa\) (0.25 mmol), \(2a\) (0.3 mmol, 1.2 equiv), Et₃N (20 mol%), CH₂Cl₂ (2 mL), 30 °C.
*b Diastereomeric ratio (dr) measured by \(^{1}H\) NMR analysis of the crude products.
* Isolated yield.
*a Reaction conditions: \(1aa\) (0.3 mmol, 1.2 equiv), \(2h\) (0.25 mmol), Et₃N (20 mol%), CH₂Cl₂ (2 mL), 30 °C.

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2015, 47, 95–107
ral products and pharmacologically relevant therapeutic agents.13–15 Molecules containing these scaffolds exhibit a broad range of bioactivity, therefore, they were also used in our method to expand the library of 3. Remarkably, indole- and coumarin-substituted methylenemalononitriles were used successfully in the reaction to give 3aai, 3aam, and 3aap in 60–66% yields (entries 12, 13, and 16); these compounds have a high possibility of having interesting bioactivity. However, other attempts to react alkylidenemalononitriles under the standard conditions gave unsatisfied reactivity. However, other attempts to react alkylidenemalononitriles have a high possibility of having interesting bioactivity. It was pleasing to find that most reactions afforded the corresponding products in good yields and with excellent diastereoselectivity. Similar yields and product distribution.

Under the optimized conditions, the scope of the new domino double Michael reaction was next examined using various 1-R2-5-phenyl-substituted 1, prepared from benzylidenacetone and various readily available acid chlorides (Table 3),10 and 2-benzylidenemalononitrile (2a). It was pleasing to find that the most reactions afforded the corresponding products in good yields and with excellent diastereoselectivities. When the R2 functionality was an electron-donating group containing phenyl group in -keto, 55% -enol, 18% -trans, 78%, and 81% respectively. The reactions of aliphatic R2 were also examined (entries 6 and 7), and the corresponding products were produced smoothly with a significant increase in reaction rate and yield was found in comparison with electron-withdrawing group substituted phenyls (entries 8 vs. 1 and 2), but remarkably it was still better than that of electron-donating group substituted phenyls (entries 8 vs. 3). It is interesting that electronic effects at R2 have a larger influence on the overall reactivity as compared with R1 and R2 substituents. Furthermore, heteroaryl motifs such as 1ae-af were successfully incorporated, and in similar results 3aea and 3afa were obtained in 81–85% yields (entries 4 and 5). The reactions of aliphatic R2 were also examined (entries 6 and 7), and the corresponding products were produced smoothly with a significant increase in yields and reaction rates while steric effects were not involved. On the other hand, when a sterically hindered R2 was investigated (entry 8), a noticeable decrease in reaction rate and yield was found in comparison with electron-withdrawing group substituted phenyls (entries 8 vs. 1 and 2), but remarkably it was still better than that of electron-donating group substituted phenyls (entries 8 vs. 3). It is interesting that electronic effects at R2 have a larger influence on the overall reactivity as compared with R1 and R2 substituents. Furthermore, heteroaryl motifs such as 1ae-af were successfully incorporated, and in similar results 3aea and 3afa were obtained in 81–85% yields (entries 4 and 5). The reactions of aliphatic R2 were also examined (entries 6 and 7), and the corresponding products were produced smoothly with a significant increase in yields and reaction rates while steric effects were not involved. On the other hand, when a sterically hindered R2 was investigated (entry 8), a noticeable decrease in reaction rate and yield was found in comparison with electron-withdrawing group substituted phenyls (entries 8 vs. 1 and 2), but remarkably it was still better than that of electron-donating group substituted phenyls (entries 8 vs. 3). It is interesting that electronic effects at R2 have a larger influence on the overall reactivity as compared with R1 and R2 substituents. Furthermore, heteroaryl motifs such as 1ae-af were successfully incorporated, and in similar results 3aea and 3afa were obtained in 81–85% yields (entries 4 and 5). The reactions of aliphatic R2 were also examined (entries 6 and 7), and the corresponding products were produced smoothly with a significant increase in yields and reaction rates while steric effects were not involved. On the other hand, when a sterically hindered R2 was investigated (entry 8), a noticeable decrease in reaction rate and yield was found in comparison with electron-withdrawing group substituted phenyls (entries 8 vs. 1 and 2), but remarkably it was still better than that of electron-donating group substituted phenyls (entries 8 vs. 3).

To thoroughly extend the generality of this method, 1-phenyl-5-R3-substituted 1, synthesized from benzoyl chloride and methyl vinyl ketones readily prepared through the aldol condensation or the Wittig reaction, were reacted with 2-benzylidenemalononitrile (2a) and the results are summarized in Table 4. To our delight, a wide variety of functionalized 3 were obtained in medium to good yields and with excellent diastereoselectivity. Similar yields and rates were afforded no matter if electron-rich- or electron-poor-substituted phenyl, or heteroaryl motifs were involved. This suggests that 5-R3 substituents on 1 have less influence on the overall reactivity as compared with R1 and R2 substituents and the second addition step on the conjugated ketone was too fast to be retarded by R3 substituents due to intramolecular addition. Inspired by ideas in Table 2, indolyl motifs were also successfully introduced and provided similar results to other heteroaryl motifs in this position (entries 7 and 8 vs. 4–6).

In addition, the scope of the work was further extended to the one-pot reaction due to the easy and mild preparation of 2. To study this proposal, 1aa was treated with benzaldehyde and malononitrile in the presence of triethylamine under similar conditions, and it is pleasing to find that the corresponding product 3aaa was obtained as the sole diastereomer in similar yield to that obtained in a stepwise reaction, although a prolonged reaction time was nec-
Pleased by our results so far, we turned our attention to synthetic applications related to the introduction of more functionalities on the carbocycles, and it would be definitely attractive to apply our method to compounds existing in nature or that have interesting bioactivity. For this purpose, curcumin-related derivatives \textit{4a} and \textit{4b} were prepared for the reaction with \textit{2a} under typical conditions.10b To our delight, our method can be used directly as expected and gave very highly functionalized 6-aryl-3-(3-arylpropenoyl)-4-hydroxy-2-phenylcyclohex-3-ene-1,1-dicarbonitriles \textit{5aa} (65\%) and \textit{5ba} (75\%) with excellent diastereoselectivity in 12 hours (Scheme 4). Moreover, as chalcones are an important and enormous class of natural compounds that display interesting biological activity, and recent research suggests that the development of hybrid compounds through the combination of different pharmacophores may lead to molecules with interesting profiles. Based on these criteria, our methodology allowed practical and versatile functionalization, which makes it attractive from a medicinal chemistry point of view.

In summary, we have developed a novel domino method to construct highly functionalized cyclohexanone derivatives via a double Michael reaction of 1-hydroxy-1,4-dien-3-ones and 2-alkylidenemalononitriles. The attractive features of this process are the practicability and the mild reaction conditions, which provide a series of cyclohexanone derivatives in moderate to good yields with extremely high diastereoselectivity. In addition, considering the high functional group tolerance of our method, this protocol should also offer an efficient and stereoselective entry to structurally more diverse, bioactive, and potentially pharmacologically active compounds. Current efforts are focused in two categories in order to: (1) broaden the substrate scope and study substrates other than methylenemalononitriles such as \(\alpha\)-cyanocinnamates, and (2) develop new applications for this versatile methodology especially for the asymmetric synthesis of valuable compounds. Further investigations in these areas will be reported in due course.18
All reactions were carried out under an ordinary atmosphere in glass vials, unless otherwise noted. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Yields refer to isolated yields of compounds estimated to be > 95% pure as determined by 1H NMR. 1H and 13C NMR spectra were generally recorded on Bruker AV-400 or AV-500 spectrometers using CDCl3 as solvent at 400 or 500 and 100 or 125 MHz, respectively. Chemical shifts are reported in ppm relative to CDCl3 (δ = 7.26 ppm) in indicated cases. Analytical thin-layer chromatography (TLC) was performed using Merck 60 F254 precoated silica gel plates (0.2 mm thickness). Flash chromatography was performed using Merck silica gel 60. Key experimental procedures as well as spectroscopic data of products are summarized in the following experimental section.

2,6-Disubstituted 3-Alkanoyl-4-hydroxycyclohex-3-ene-1,1-dicarbonitriles 3 or 5; General Procedure

In an ordinary vial equipped with a magnetic stirring bar, compound 1 or 4 (0.25 mmol), 2a (0.3 mmol, 1.2 equiv), and Et3N (0.05 mmol, 20 mol%) were dissolved in CH2Cl2 (2.0 mL) and stirred at 30 °C. After the completion of the reaction, the mixture was subjected directly to flash column chromatography (silica gel) to give the corresponding products 3 or 5.

One-Pot Procedure for 3aa

In an ordinary vial equipped with a magnetic stirring bar, compound 1aa (0.25 mmol), benzaldehyde (0.3 mmol, 1.2 equiv), malononitrile (0.3 mmol, 1.2 equiv), and Et3N (20 mol%) were dissolved in CH2Cl2 (2.0 mL) and stirred at 30 °C. After completion of the reaction (36 h), the mixture was subjected directly to flash column chromatography (silica gel) to give the corresponding product 3aaa.

3aaa

White solid; yield: 87.9 mg (87%); Rf = 0.21 (CH2Cl2–hexanes, 2:3); 100% enol form; mp 248.3–249.2 °C.

IR (KBr): 3448 (s), 3059 (w), 2374 (w), 1608 (s), 1458 (w), 1240 (m), 702 cm–1 (s).

Table 4 Domino Double Michael Reactions of 2a and R3-Substituted 1a

<table>
<thead>
<tr>
<th>Entry</th>
<th>R3 (1)</th>
<th>Time (h)</th>
<th>Yield b,c (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4-ClC6H4 (1ba)</td>
<td>12</td>
<td>3baa, 68</td>
</tr>
<tr>
<td>2</td>
<td>4-BrC6H4 (1ca)</td>
<td>12</td>
<td>3caa, 75</td>
</tr>
<tr>
<td>3</td>
<td>4-MeOC6H4 (1da)</td>
<td>12</td>
<td>3daa, 72</td>
</tr>
<tr>
<td>4</td>
<td>2-thienyl (1ea)</td>
<td>14</td>
<td>3eaa, 66</td>
</tr>
<tr>
<td>5</td>
<td>2-furyl (1fa)</td>
<td>24</td>
<td>3faa, 65</td>
</tr>
<tr>
<td>6</td>
<td>3-pyridyl (1ga)</td>
<td>12</td>
<td>3gaa, 59</td>
</tr>
<tr>
<td>7</td>
<td>3-pyridyl (1ha)</td>
<td>24</td>
<td>3haa, 70</td>
</tr>
<tr>
<td>8</td>
<td>3-pyridyl (1ia)</td>
<td>24</td>
<td>3iaa, 66</td>
</tr>
</tbody>
</table>

* Reaction conditions: 1 (0.25 mmol), 2a (0.3 mmol, 1.2 equiv), Et3N (20 mol%), CH2Cl2 (2 mL), 30 °C.

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
3aa

White solid; yield: 96.5 mg (85%); $R_f = 0.18$ (CH$_2$Cl$_2$–hexanes, 2:3; 100% enol form; mp 152.9–153.8 °C.

IR (KBr): 3702 (w), 2923 (m), 2358 (m), 2328 (m), 1596 (s), 1489 (m), 1345 (s), 1314.0, 1308.0, 1296.0, 1293.1, 1285.3, 1260.0, 1142.4, 1130.0, 1052.4, 482.2, 444.3, 402.4, 34.5.

HRMS (ESI-TOF): m/z [M – H]$^-$ calcd for C$_{27}$H$_{18}$N$_2$O$_2$: 477.1579; found: 477.1581.

3aad

White solid; yield: 87.5 mg (77%); $R_f = 0.41$ (CH$_2$Cl$_2$–hexanes, 1:1; 100% enol form; mp 193.6–194.4 °C.

IR (KBr): 3435 (m), 3025 (w), 2369 (w), 1618 (s), 1413 (s), 1239 (s), 702 cm$^{-1}$ (s).

1H NMR (400 MHz, CDCl$_3$): δ = 16.15 (s, 1 H), 7.46–7.32 (m, 7 H), 7.32–7.21 (m, 5 H), 6.96 (d, $J = 7.4$ Hz, 2 H), 5.68 (s, 1 H), 4.87 (s, 1 H), 3.37 (dd, $J = 19.9, 6.4$ Hz, 1 H), 3.18 (dd, $J = 19.9, 6.4$ Hz, 1 H).

13C NMR (100 MHz, CDCl$_3$): δ = 198.5, 180.5, 136.7, 136.3, 134.1, 131.1, 130.44, 130.42, 129.6, 129.3, 128.5, 128.0, 128.1, 125.0, 114.3, 112.3, 105.8, 44.6, 42.8, 40.5, 34.1.

HRMS (ESI-TOF): m/z [M – H]$^-$ calcd for C$_{27}$H$_{18}$N$_2$O$_2$: 477.1579; found: 477.1581.

3aae

White solid; yield: 93.0 mg (77%); $R_f = 0.56$ (CH$_2$Cl$_2$–hexanes, 1:1; 100% enol form; mp 259.9–260.7 °C.

IR (KBr): 3435 (s), 3063 (w), 2369 (w), 1618 (s), 1413 (s), 1239 (s), 702 cm$^{-1}$ (s).

1H NMR (400 MHz, CDCl$_3$): δ = 16.35 (s, 1 H), 7.50 (d, $J = 8.4$ Hz, 2 H), 7.46–7.37 (m, 4 H), 7.36–7.28 (m, 4 H), 7.02 (d, $J = 7.5$ Hz, 2 H), 6.99 (d, $J = 8.4$ Hz, 2 H), 4.49 (s, 1 H), 3.42–3.26 (m, 2 H), 3.10 (dd, $J = 18.2, 4.8$ Hz, 1 H).

13C NMR (100 MHz, CDCl$_3$): δ = 196.8, 182.0, 136.4, 135.0, 134.7, 132.1, 131.6, 130.8, 129.6, 129.3, 128.5, 128.0, 128.3, 126.0, 114.1, 113.0, 105.1, 48.6, 44.2, 40.2, 34.4.

HRMS (ESI-TOF): m/z [M – H]$^-$ calcd for C$_{27}$H$_{18}$N$_2$O$_2$: 481.0552; found: 481.0545.

3aa

White solid; yield: 83.4 mg (76%); $R_f = 0.57$ (CH$_2$Cl$_2$–hexanes, 1:1; 100% enol form; mp 213.9–214.7 °C.

IR (KBr): 3442 (w), 3059 (w), 2243 (w), 1618 (s), 1406 (w), 1268 (m), 702 cm$^{-1}$ (s).

1H NMR (400 MHz, CDCl$_3$): δ = 16.15 (s, 1 H), 7.46–7.32 (m, 7 H), 7.32–7.21 (m, 5 H), 6.96 (d, $J = 7.4$ Hz, 2 H), 5.28 (s, 1 H), 3.54 (dd, $J = 12.0, 5.8$ Hz, 1 H), 3.36 (dd, $J = 19.5, 12.0$ Hz, 1 H), 3.09 (dd, $J = 19.6, 5.8$ Hz, 1 H).

13C NMR (100 MHz, CDCl$_3$): δ = 198.5, 180.5, 136.7, 136.3, 134.1, 131.1, 130.44, 130.42, 129.6, 129.3, 128.5, 128.0, 128.3, 127.0, 125.4, 114.3, 112.3, 105.8, 44.6, 42.8, 40.5, 34.1.

HRMS (ESI-TOF): m/z [M – H]$^-$ calcd for C$_{27}$H$_{18}$N$_2$O$_2$: 437.1057; found: 437.1057.

3aa
White solid; yield: 81.6 mg (73%); Rf = 0.26 (CH2Cl2–hexanes, 1:1); 100% enol form; mp 228.1–229.1 °C.
IR (KBr): 3456 (s), 3433 (m), 3282 (w), 2370 (w), 1609 (s), 1411 (s), 1272 (s), 700 cm–1 (s).
1H NMR (400 MHz, CDCl3): δ = 6.02 (s, 1 H), 4.65 (s, 1 H), 3.63 (dd, J = 7.6, 12.7 Hz, 2 H), 2.35 (t, J = 7.6 Hz, 2 H), 1.32 (s, 3 H), 0.91 (d, J = 6.8 Hz, 3 H), 0.67 (d, J = 19.8, 6.3 Hz, 1 H).
13C NMR (100 MHz, CDCl3): δ = 196.3, 184.2, 131.2, 129.7, 129.5, 128.5, 128.3, 127.8, 127.4, 114.2, 113.8, 113.7, 113.0, 106.2, 43.6, 41.8, 40.9, 34.8, 34.4.

MS (70 eV, EI): m/z (%) = 404 [M]+ (20), 252 (80), 105 (100), 77 (70).
HRMS (ESI-TOF): m/z [M + H]++ calcd for C76H63N11O7: 111.3776; found: 111.3767.

3ab
White solid; yield: 82.8 mg (72%); Rf = 0.28 (CH2Cl2–hexanes, 1:1); 100% enol form; mp 201.2–202.2 °C.
IR (KBr): 3464 (s), 3433 (m), 3282 (w), 2370 (w), 1609 (s), 1411 (s), 1272 (s), 700 cm–1 (s).
1H NMR (400 MHz, CDCl3): δ = 6.01 (s, 1 H), 4.64 (s, 1 H), 3.63 (dd, J = 7.6, 12.6 Hz, 2 H), 2.35 (t, J = 7.6 Hz, 2 H), 1.32 (s, 3 H), 0.91 (d, J = 6.8 Hz, 3 H), 0.67 (d, J = 19.8, 6.3 Hz, 1 H).
13C NMR (100 MHz, CDCl3): δ = 196.3, 184.2, 131.2, 129.7, 129.5, 128.5, 128.3, 127.8, 127.4, 114.2, 113.8, 113.7, 113.0, 106.2, 43.6, 41.8, 40.9, 34.8, 34.4.

MS (70 eV, EI): m/z (%) = 404 [M]+ (20), 252 (80), 105 (100), 77 (70).
HRMS (ESI-TOF): m/z [M + H]++ calcd for C76H63N11O7: 111.3776; found: 111.3767.

3ac
White solid; yield: 83.4 mg (73%); Rf = 0.28 (CH2Cl2–hexanes, 1:1); 100% enol form; mp 230.2–231.2 °C.
IR (KBr): 3464 (s), 3433 (m), 3282 (w), 2370 (w), 1609 (s), 1411 (s), 1272 (s), 700 cm–1 (s).
1H NMR (400 MHz, CDCl3): δ = 6.02 (s, 1 H), 4.65 (s, 1 H), 3.63 (dd, J = 7.6, 12.7 Hz, 2 H), 2.35 (t, J = 7.6 Hz, 2 H), 1.32 (s, 3 H), 0.91 (d, J = 6.8 Hz, 3 H), 0.67 (d, J = 19.8, 6.3 Hz, 1 H).
13C NMR (100 MHz, CDCl3): δ = 196.3, 184.2, 131.2, 129.7, 129.5, 128.5, 128.3, 127.8, 127.4, 114.2, 113.8, 113.7, 113.0, 106.2, 43.6, 41.8, 40.9, 34.8, 34.4.

MS (70 eV, EI): m/z (%) = 404 [M]+ (20), 252 (80), 105 (100), 77 (70).
HRMS (ESI-TOF): m/z [M + H]++ calcd for C76H63N11O7: 111.3776; found: 111.3767.
Y.-J. Jang et al.

13C NMR (100 MHz, CDCl3): δ = 193.7, 184.3, 136.6, 135.4, 131.2, 129.6, 129.4, 128.9, 128.2, 127.6, 114.6, 114.2, 105.0, 47.7, 43.9, 40.8, 35.3, 32.4, 24.0, 21.8.

MS (70 eV, EI): m/z (%) = 370 [M]⁺ (6), 327 (40), 223 (85), 105 (100), 77 (65).

HRMS (MALDI-TOF): m/z [M + Na]⁺ calcd for C35H36N2O4ClNa: 539.2235; found: 539.2245.

3aa-keto

Yellow solid; yield: 35.6 mg (37%); Rf = 0.63 (CH3Cl2–hexanes, 1:1); 100% keto form; mp 214.2–215.1 °C.

IR (KBr): 3710 (w), 3038 (m), 2916 (m), 2351 (m), 1714 (m), 1604 (m), 1592 (w), 1545 (w), 1486 (w), 1303 (s), 1293 (s), 1259 (s), 1158 (s), 1138 (s), 1104 (s), 1020 (m), 970 (m), 940 (m), 909 (s), 738 (s), 703 cm⁻¹ (s).

HRMS (MALDI-TOF): m/z [M + Na]⁺ calcd for C35H37N2O4BrNa: 539.2235; found: 539.2245.

1H NMR (400 MHz, CDCl3): δ = 8.89–8.81 (m, 2 H), 7.70 (t, J = 8.0 Hz, 1 H), 7.48–7.32 (m, 3 H), 4.98 (d, J = 3.5 Hz, 1 H), 4.18 (dd, J = 12.3, 6.9 Hz, 1 H), 3.51 (d, J = 4.2 Hz, 1 H), 3.01 (dd, J = 19.2, 12.4, 1.5 Hz, 1 H), 2.79 (dd, J = 19.2, 6.9 Hz, 1 H), 1.21 (s, 9 H).

HRMS (MALDI-TOF): m/z [M + Na]⁺ calcd for C35H37N2O4BrNa: 539.2235; found: 539.2245.

3ap

White solid; yield: 94.3 mg (78%); Rf = 0.57 (CH3Cl2–hexanes, 1:1); 100% enol form; mp 241.8–242.6 °C.

IR (KBr): 3448 (m), 3054 (w), 2374 (w), 1592 (s), 1414 (s), 1275 (s), 703 cm⁻¹ (s).

3ada

White solid; yield: 42.4 mg (39%); Rf = 0.36 (CH3Cl2–hexanes, 1:1); 100% enol form; mp 205.4–206.4 °C.

IR (CH3Cl2): 3313 (w), 3038 (w), 2969 (w), 1596 (s), 1413 (m), 1303 (s), 1259 (s), 701 cm⁻¹ (m).

3aea

White solid; yield: 83.1 mg (81%); Rf = 0.31 (CH3Cl2–hexanes, 1:1); 100% enol form; mp 243.5–244.2 °C.

IR (KBr): 3448 (m), 2920 (w), 2375 (w), 1592 (s), 1413 (s), 1275 (s), 702 cm⁻¹ (s).

3afa

Yellow solid; yield: 83.8 mg (85%); Rf = 0.36 (CH3Cl2–hexanes, 1:1); 100% enol form; mp 214.2–215.1 °C.

IR (KBr): 3448 (m), 3054 (w), 2374 (w), 1592 (s), 1414 (s), 1275 (s), 703 cm⁻¹ (s).

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2015, 47, 95–107
IR (KBr): 3436 (m), 2922 (w), 2244 (w), 1591 (s), 1411 (s), 1246 (m), 704 cm⁻¹ (s).

1H NMR (400 MHz, CDCl₃): δ = 17.36 (s, 1 H), 7.52 (s, 1 H), 7.47–7.35 (m, 8 H), 7.34–7.29 (m, 2 H), 7.25 (d, J = 3.4 Hz, 1 H), 6.48 (q, J = 1.6 Hz, 1 H), 5.48 (s, 1 H), 3.47 (dd, J = 12.0, 6.0 Hz, 1 H), 3.33 (dd, J = 19.5, 12.0 Hz, 1 H), 3.07 (dd, J = 19.6, 6.1 Hz, 1 H).

13C NMR (100 MHz, CDCl₃): δ = 184.2, 178.7, 150.4, 146.8, 136.4, 135.2, 130.3, 129.4, 129.2, 129.1, 128.6, 128.3, 120.5, 114.6, 113.5, 112.7, 103.4, 47.5, 44.6, 39.5, 33.5, 30.9, 7.6.

HRMS (ESI-TOF): m/z (%) = 394 [M⁺] (35), 239 (25), 159 (30), 95 (100), 77 (40).

MS (70 eV, EI): m/z (%) = 369 [M⁺] (70), 239 (35), 159 (30), 95 (100), 77 (40).

IR (KBr): 3436 (m), 2922 (w), 2244 (w), 1591 (s), 1411 (s), 1246 (m), 704 cm⁻¹ (s).

1H NMR (400 MHz, CDCl₃): δ = 17.19 (s, 1 H), 7.51–7.42 (m, 3 H), 7.41–7.31 (m, 5 H), 7.31–7.26 (m, 2 H), 5.05 (s, 1 H), 3.31–3.16 (m, 2 H), 3.08–2.94 (m, 1 H), 1.15 (s, 9 H).

13C NMR (100 MHz, CDCl₃): δ = 207.2, 181.0, 135.8, 135.2, 130.3, 129.4, 129.3, 129.2, 129.0, 128.3, 114.3, 113.8, 104.5, 47.7, 44.4, 43.1, 40.0, 34.7, 27.8.

MS (70 eV, EI): m/z (%) = 384 [M⁺] (10), 327 (30), 223 (40), 83 (100), 57 (15).

3aia-enol

White solid; yield: 90.6 mg (75%); Rᶠ = 0.25 (CH₂Cl₂–hexanes, 1:1); 100% enol form; mp 182.6–183.6 °C.

IR (KBr): 3436 (m), 2922 (w), 2244 (w), 1591 (s), 1411 (s), 1246 (m), 704 cm⁻¹ (s).

1H NMR (400 MHz, CDCl₃): δ = 17.19 (s, 1 H), 7.51–7.42 (m, 3 H), 7.41–7.31 (m, 5 H), 7.31–7.26 (m, 2 H), 5.05 (s, 1 H), 3.31–3.16 (m, 2 H), 3.08–2.94 (m, 1 H), 1.15 (s, 9 H).

13C NMR (100 MHz, CDCl₃): δ = 207.2, 181.0, 135.8, 135.2, 130.3, 129.4, 129.3, 129.2, 129.0, 128.3, 114.3, 113.8, 104.5, 47.7, 44.4, 43.1, 40.0, 34.7, 27.8.

MS (70 eV, EI): m/z (%) = 384 [M⁺] (10), 327 (30), 223 (40), 83 (100), 57 (15).

MS (70 eV, EI): m/z (%) = 482 [M]+ (10), 484 [M + 2]+ (10), 250 (55), 155 (25), 145 (20), 105 (100), 77 (75).
HRMS (ESI-TOF): m/z [M – H]– calcd for C26H19N3O2: 433.1552; found: 433.1556.

3aaa
White solid; yield: 78.2 mg (72%); R_r = 0.47 (CH2Cl2–hexanes, 1:1); 100% enol form; mp 207.8–208.4 °C.
IR (KBr): 3439 (m), 2836 (w), 2244 (w), 1726 (w), 1592 (s), 1474 (m), 1467 (m), 1230 (m), 697 cm–1 (s).
1H NMR (400 MHz, CDCl3): δ = 16.42 (s, 1 H), 7.44–7.32 (m, 4 H), 7.25 (dd, J = 17.5, 8.3 Hz, 4 H), 7.14–7.08 (m, 2 H), 7.00 (d, J = 7.5 Hz, 2 H), 6.88 (d, J = 8.6 Hz, 2 H), 4.50 (s, 3 H), 3.49 (dd, J = 11.6, 6.3 Hz, 1 H), 3.28 (dd, J = 19.7, 11.7 Hz, 1 H), 3.07 (dd, J = 19.6, 6.2 Hz, 1 H).
13C NMR (100 MHz, CDCl3): δ = 196.6, 182.4, 160.3, 136.5, 136.0, 130.6, 130.2, 129.5, 129.2, 128.8, 128.3, 126.8, 126.1, 114.53, 114.46, 113.3, 105.4, 55.3, 49.0, 44.9, 39.5, 34.8.

MS (70 eV, EI): m/z (%) = 434 [M]+ (50), 250 (60), 155 (35), 104 (100), 77 (80).

3aaa
White solid; yield: 67.7 mg (66%); R_r = 0.32 (CH2Cl2–hexanes, 1:1); 100% enol form; mp 258.9–259.8 °C.
IR (KBr): 3448 (m), 3055 (w), 2375 (w), 1602 (s), 1416 (s), 1256 (s), 747 cm–1 (s).
1H NMR (400 MHz, CDCl3): δ = 16.34 (s, 1 H), 7.44–7.30 (m, 5 H), 7.29–7.22 (m, 2 H), 7.14–7.06 (m, 3 H), 7.04–6.96 (m, 3 H), 4.52 (s, 1 H), 3.82 (t, J = 8.8 Hz, 1 H), 3.26 (d, J = 8.8 Hz, 2 H).
13C NMR (100 MHz, CDCl3): δ = 196.7, 181.2, 137.5, 136.5, 135.8, 130.7, 130.1, 129.3, 128.9, 128.3, 127.8, 124.7, 126.3, 126.0, 114.1, 113.1, 105.4, 48.7, 45.3, 36.5, 36.4.

MS (70 eV, EI): m/z (%) = 410 [M]+ (15), 250 (35), 105 (100), 77 (90).

3aaa
White solid; yield: 95.8 mg (70%); R_r = 0.27 (CH2Cl2–hexanes, 1:1); 100% enol form; mp 258.9–259.8 °C.
IR (KBr): 3664 (s), 3092 (w), 2359 (w), 1684 (w), 1600 (w), 1455 (w), 1082 (s), 700 cm–1 (s).
1H NMR (400 MHz, CDCl3): δ = 16.44 (s, 1 H), 8.35 (d, J = 8.3 Hz, 1 H), 7.77 (d, J = 7.4 Hz, 2 H), 7.63 (t, J = 7.4 Hz, 1 H), 7.57 (s, J = 7.5 Hz, 1 H), 7.54 (J = 7.6 Hz, 2 H), 7.46–7.32 (m, 5 H), 7.28 (t, J = 7.7 Hz, 2 H), 7.22–7.16 (m, 3 H), 7.07 (d, J = 7.9 Hz, 1 H), 7.02 (d, J = 7.6 Hz, 2 H), 4.55 (s, 1 H), 3.96 (dd, J = 11.1, 7.1 Hz, 1 H), 3.24–3.06 (m, 2 H).
13C NMR (100 MHz, CDCl3): δ = 196.5, 182.0, 168.3, 136.3, 136.0, 133.7, 132.5, 130.8, 130.7, 129.5, 129.0, 128.8, 128.4, 126.1, 126.0, 125.95, 124.0, 118.3, 116.7, 116.5, 114.3, 113.5, 105.3, 48.7, 44.2, 35.1, 31.4.

MS (70 eV, EI): m/z (%) = 547 [M]+ (10), 105 (100), 77 (30).

3aaa
Yellow solid; yield: 88.0 mg (66%); R_r = 0.49 (CH2Cl2–hexanes, 1:1); 100% enol form; mp 222.4–223.2 °C.
IR (KBr): 3748 (w), 3031 (w), 2916 (w), 2359 (w), 1726 (w), 1592 (s), 1474 (m), 1467 (m), 1230 (m), 697 cm–1 (s).
1H NMR (400 MHz, CDCl3): δ = 16.46 (s, 1 H), 7.47–7.37 (m, 4 H), 7.34 (s, 1 H), 7.32–7.21 (m, 6 H), 7.21–7.16 (m, 3 H), 7.14 (t, J = 7.4 Hz, 1 H), 7.07 (d, J = 6.9 Hz, 2 H), 7.02 (t, J = 8.0 Hz, 3 H), 5.31 (d, J = 4.2 Hz, 2 H), 4.54 (s, 1 H), 4.02 (dd, J = 11.1, 6.9 Hz, 1 H), 3.29 (dd, J = 20.0, 11.2 Hz, 1 H), 3.21 (dd, J = 20.0, 6.9 Hz, 1 H).
13C NMR (100 MHz, CDCl3): δ = 196.7, 182.6, 136.7, 136.6, 136.3, 136.2, 130.6, 130.2, 129.2, 128.9, 128.3, 127.8, 127.0, 126.73, 126.66, 126.1, 122.7, 120.0, 118.5, 115.0, 113.8, 110.2, 110.1, 105.6, 50.3, 48.8, 45.1, 35.9, 32.1.

MS (70 eV, EI): m/z (%) = 534 [M]+ (15), 207 (10), 115 (5), 105 (40), 92 (100), 77 (25).
5aa
Yellow solid; yield: 70.0 mg (65%); Rf = 0.50 (CH2Cl2–hexanes, 1:1); 100% enol form; mp 235.5–236.3 °C.

IR (KBr): 3702 (w), 3030 (m), 2358 (w), 1733 (w), 1627 (s), 1451 (s), 100% enol form; mp 235.5–236.3 °C.

1H NMR (400 MHz, CDCl3): δ = 17.19 (s, 1 H), 7.74 (d, J = 15.4 Hz, 1 H), 7.52–7.41 (m, 5 H), 7.40–7.29 (m, 10 H), 6.59 (d, J = 15.4 Hz, 1 H), 4.79 (s, 1 H), 3.50 (d, J = 12.3, 5.8 Hz, 1 H), 3.30 (d, J = 19.5, 12.3 Hz, 1 H), 3.03 (d, J = 19.5, 5.9 Hz, 1 H).

13C NMR (100 MHz, CDCl3): δ = 1451 (s), 1272 (s), 114.4, 113.0, 112.0, 111.4, 104.8, 48.5, 44.6, 39.9, 35.2.

MS (70 eV, EI): m/z (%) = 522 [M+] (40), 367 (25), 190 (30), 177 (100), 150 (60), 77 (30).

Acknowledgment
We thank the Ministry of Science and Technology of the Republic of China (NSC 101-2113-M-003-001-MY3) for financial support.

Supporting Information
Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1379143.

References

(10) (a) MacDonald, F. K.; Burnell, D. J. Org. Chem. 2009, 74, 6973; all the starting materials, 1-hydroxy-1,4-dien-3-ones 1, were readily prepared according to the protocol mentioned in this article, and 1ae-ag, 1ca, and 1ga-ia were new compounds. (b) Qiu, X.; Liu, Z.; Shao, W.-Y.; Liu, X.; Jing, D.-P.; Yu, Y.-J.; An, L.-K.; Huang, S.-L.; Bu, X.-Z.; Huang, Z.-S.; Gu, L.-Q. Bioorg. Med. Chem. 2008, 16, 8035; starting materials, curcumin-related derivatives 4a and 4b, were prepared according to this article, and 4b was a new compound.

(11) This reaction was carried out using 1aa (0.25 mmol) and 2a (0.3 mmol, 1.2 equiv) in the absence of an added base in MeOH (10.5 mL, much more solvent than before due to the low solubility of 1aa in MeOH) at 30 °C for 1d. After purification as usual, only 14% of product was obtained. It indicated that an added base was necessary for acceptable results although the reaction could occur via enol very slowly.

(12) The structure of 3aaa was determined by X-ray crystal structure analysis (CCDC number: 940043), and further information is provided in the Supporting Information.

(16) The structure of 3aa-o-keto was determined by NMR analysis, and more information is provided in the Supporting Information.

(17) The structures of 3aia were determined by X-ray crystal structure analysis (CCDC number for 3aia-enol: 940045; for 3aia-keto: 940044), and more information is provided in the Supporting Information.

(18) Our reaction was not only suitable for 2-alkylidenemalononitriles, but can also be employed using substrates such as α-cyanocinnamates and β-nitrostyrenes. In fact, we already have some results from these substrates and believe further results under investigation in these areas will be reported in due course.

This article differs from the e-first online version only in its layout; no content has been changed.