Synlett 2014; 25(18): 2613-2616
DOI: 10.1055/s-0034-1379099
letter
© Georg Thieme Verlag Stuttgart · New York

Aerobic Photooxidative Synthesis of Phenols from Arylboronic Acids Using 2-Propanol as Solvent

Keita Matsui
a   Gifu Pharmaceutical University 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
,
Takafumi Ishigami
a   Gifu Pharmaceutical University 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
,
Tomoaki Yamaguchi
a   Gifu Pharmaceutical University 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
,
Eiji Yamaguchi
a   Gifu Pharmaceutical University 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
,
Norihiro Tada
a   Gifu Pharmaceutical University 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
,
Tsuyoshi Miura
b   Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
,
Akichika Itoh*
a   Gifu Pharmaceutical University 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 24 June 2014

Accepted after revision: 18 August 2014

Publication Date:
11 September 2014 (online)


Abstract

We report a useful method for the synthesis of phenols from arylboronic acids with hydrogen peroxide generated in situ by aerobic photooxidation. This reaction uses visible-light irradiation and easily handled 2-chloroanthraquinone as an organocatalyst under mild conditions, that is, an air atmosphere and ambient pressure and temperature. Because of this method’s metal- and base-free conditions, it represents an environmentally benign approach to the synthesis of phenols from arylboronic acids.

 
  • References and Notes

  • 2 Hanson P, Jones JR, Taylor AB, Walton PH, Timms AW. J. Chem. Soc., Perkin Trans. 2 2002; 1135

    • For the recent examples, see:
    • 3a Gallon BJ, Kojima RW, Kaner RB, Diaconescu PL. Angew. Chem. Int. Ed. 2007; 46: 7251
    • 3b Schulz T, Torborg C, Schäffner B, Huang J, Zapf A, Kadyrov R, Börner A, Beller M. Angew. Chem. Int. Ed. 2009; 48: 918
    • 3c Willis MC. Angew. Chem. Int. Ed. 2007; 46: 3402
    • 3d Sergeev AG, Schulz T, Torborg C, Spannenberg A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 7595
    • 3e Anderson KW, Ikawa T, Tundel RE, Buchwald SL. J. Am. Chem. Soc. 2006; 128: 10694
    • 3f Chen G, Chan AS. C, Kwong FY. Tetrahedron Lett. 2007; 48: 473
    • 4a Tlili A, Xia N, Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 8725
    • 4b Zhao D, Wu N, Zhang S, Xi P, Su X, Lan J, You J. Angew. Chem. Int. Ed. 2009; 48: 8729
    • 4c Thakur KG, Sekar G. Chem. Commun. 2011; 47: 6692
    • 4d Mehmood A, Leadbeater NE. Catal. Commun. 2012; 12: 64
  • 5 Comprehensive Organic Transformations: A Guide to Functional Group Preparations. Larock RC. Wiley-VCH; New York: 1999. 2nd ed. 959
    • 6a Xu J, Wang X, Shao C, Su D, Cheng G, Hu Y. Org. Lett. 2010; 12: 1964
    • 6b Yang H, Li Y, Jiang M, Wang J, Fu H. Chem. Eur. J. 2011; 17: 5652
    • 6c Inamoto K, Nozawa K, Yonemoto M, Kondo Y. Chem. Commun. 2011; 47: 11775
    • 6d Kaboudin B, Abedi Y, Yokomatsu T. Eur. J. Org. Chem. 2011; 6656
    • 6e Yang D, An B, Wei W, Jiang M, You J, Wang H. Tetrahedron 2014; 70: 3630
  • 7 Chowdhury AD, Mobin SM, Mukherjee S, Bhaduri S, Lahiri GK. Eur. J. Inorg. Chem. 2011; 3232
    • 8a Zheng J, Lin S, Zhu X, Jiang B, Yang Z, Pan Z. Chem. Commun. 2012; 48: 6235
    • 8b Wang L, Zhang W, Su DS, Meng X, Xiao F.-S. Chem. Commun. 2012; 48: 5476
    • 9a Simon J, Salzbrunn S, Prakash GK. S, Petasis NA, Olah GA. J. Org. Chem. 2001; 66: 633
    • 9b Prakash GK. S, Chacko S, Panja C, Thomas TE, Gurung L, Rasul G, Mathew T, Olah GA. Adv. Synth. Catal. 2009; 351: 1567
    • 9c Gogoi A, Bora U. Synlett 2012; 23: 1079
    • 9d Gogoi A, Bora U. Tetrahedron Lett. 2013; 54: 1821
    • 9e Mulakayala N, Kottur I, Kumar M, Rapolu RK, Kandagatla B, Rao P, Oruganti S, Pal M. Tetrahedron Lett. 2012; 53: 6004
    • 9f Wang L, Dai D.-Y, Chen Q, He M.-Y. J. Fluorine Chem. 2014; 158: 44
    • 9g Gohain M, Plessis MD, Tonder JH. V, Bezuidenhoudt BC. B. Tetrahedron Lett. 2014; 55: 2082
  • 10 Guo S, Lu L, Cai H. Synlett 2013; 24: 1712
  • 11 Chen D.-S, Huang J.-M. Synlett 2013; 24: 499
    • 12a Webb KS, Levy D. Tetrahedron Lett. 1995; 36: 5117
    • 12b Travis BR, Ciaramitaro BP, Borhan B. Eur. J. Org. Chem. 2002; 3429
    • 12c Maleczka RE. Jr, Shi F, Holmes D, Smith MR. III. J. Am. Chem. Soc. 2003; 125: 7792
    • 12d Molander GA, Cavalcanti LN. J. Org. Chem. 2011; 76: 623
  • 13 Kianmehr E, Yahyaee M, Tabatabai K. Tetrahedron Lett. 2007; 48: 2713
  • 14 Zhu C, Wang R, Falck JR. Org. Lett. 2012; 14: 3494
  • 15 Zou Y.-Q, Chen J.-R, Liu X.-P, Lu L.-Q, Davis R.-L, Jørgensen KA, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 784
  • 16 Sawant SD, Hudwekar AD, Kumar KA. A, Venkateswarlu V, Singh PP, Vishwakarma RA. Tetrahedron Lett. 2014; 55: 811
  • 17 Pitre SP, McTiernan CD, Ismaili H, Scaiano JC. J. Am. Chem. Soc. 2013; 135: 13286
  • 18 Cammidge AN, Goddard VH. M, Schubert CP. J, Gopee H, Hughes DL, Gonzalez-Lucas D. Org. Lett. 2011; 13: 6034
    • 19a Qu H.-L, Chen D.-S, Ye J.-S, Huang J.-M. J. Org. Chem. 2013; 78: 7482
    • 19b Jiang H, Lykke L, Pedersen SU, Xiao W.-J, Jørgensen KA. Chem. Commun. 2012; 48: 7203
    • 19c Hosoi K, Kuriyama Y, Inagi S, Fuchigami T. Chem. Commun. 2010; 46: 1284
    • 20a Matsusaki Y, Yamaguchi T, Tada N, Miura T, Itoh A. Synlett 2012; 23: 2059
    • 20b Tada N, Cui L, Ishigami T, Ban K, Miura T, Uno B, Itoh A. Green Chem. 2012; 14: 3007
    • 20c Cui L, Furuhashi S, Tachikawa Y, Tada N, Miura T, Itoh A. Tetrahedron Lett. 2013; 54: 162
    • 20d Hirashima S, Nobuta T, Tada N, Miura T, Itoh A. Org. Lett. 2010; 12: 3645
    • 20e Tada N, Ban K, Ishigami T, Nobuta T, Miura T, Itoh A. Tetrahedron Lett. 2011; 52: 3821
    • 20f Nobuta T, Fujiya A, Hirashima S, Tada N, Miura T, Itoh A. Tetrahedron Lett. 2012; 53: 5306
    • 20g Kanai N, Nakayama H, Tada N, Itoh A. Org. Lett. 2010; 12: 1948
    • 20h Nobuta T, Hirashima S, Tada N, Miura T, Itoh A. Org. Lett. 2011; 13: 2576
    • 20i Nobuta T, Fujiya A, Tada N, Miura T, Itoh A. Synlett 2012; 23: 2975
    • 20j Nobuta T, Fujiya A, Yamaguchi T, Tada N, Miura T, Itoh A. RSC Adv. 2013; 3: 10189
    • 20k Kariya A, Yamaguchi T, Nobuta T, Tada N, Miura T, Itoh A. RSC Adv. 2014; 4: 13191
    • 20l Tada N, Hattori K, Nobuta T, Miura T, Itoh A. Green Chem. 2011; 13: 1669
    • 20m Shimada Y, Hattori K, Tada N, Miura T, Itoh A. Synthesis 2013; 45: 2684
  • 21 Cui L, Tada N, Okubo H, Miura T, Itoh A. Green Chem. 2011; 13: 2347
  • 22 General Procedure A solution of arylboronic acid (0.3 mmol), 2-chloro-anthraquinone (0.05 equiv) in 2-PrOH (5 mL) in a Pyrex test tube in air atmosphere is stirred and irradiated externally with a 21 W fluorescent lamp for 20 h. The reaction mixture was concentrated in vacuo. Purification of the crude product by a silica gel column chromatography provided the product. 4-Chlorophenol (2a) Yield 31.7 mg, 82% (10 mmol scale: 1.17g, 91%); pale yellow solid. 1H NMR (500 MHz, CDCl3): δ = 7.19 (d, J = 8.9 Hz, 2 H), 6.77 (d, J = 8.9 Hz, 2 H), 4.94 (br s, 1 H); GC–MS (EI+): m/z = 128 [M]+, 100, 65. 4-Bromophenol (2b) Yield 39.7 mg, 76%; pale yellow oil. 1H NMR (500 MHz, CDCl3): δ = 7.33 (d, J = 8.9 Hz, 2 H), 6.72 (d, J = 8.9 Hz, 2 H), 5.31 (br s, 1 H). GC–MS (EI+): m/z = 174 [M]+, 172 [M]+, 93, 65. 4-Cyanophenol (2c) Yield 29.0 mg, 81%; colorless solid. 1H NMR (400 MHz, CDCl3): δ = 7.56 (d, J = 8.7 Hz, 2 H), 6.94 (d, J = 8.7 Hz, 2 H), 6.73 (br s, 1 H). DART-MS: m/z = 120.04 [M + H]+. 4-(Trifluoromethyl)phenol (2d) Yield 30.4 mg, 63%; colorless oil. 1H NMR (500 MHz, CDCl3): δ = 7.52 (d, J = 8.4 Hz, 2 H), 6.90 (d, J = 8.4 Hz, 2 H), 5.63 (br s, 1 H). GC–MS (EI+): m/z = 162 [M]+, 143, 112. 4-Nitrophenol (2e) Yield 40.9 mg, 98%; pale yellow solid. 1H NMR (400 MHz, DMSO-d 6): δ = 11.09 (br s, 1 H), 8.14 (d, J = 8.9 Hz, 2 H), 6.95 (d, J = 8.9 Hz, 2 H). GC–MS (EI+): m/z = 139 [M]+, 109, 65. 3-Nitrophenol (2f) Yield 40.3 mg, 97%; pale yellow solid. 1H NMR (500 MHz, DMSO-d 6): δ = 10.46 (s, 1 H), 7.67 (dd, J = 7.8, 2.3 Hz, 1 H), 7.56 (t, J = 2.3 Hz, 1 H), 7.47 (t, J = 7.8 Hz, 1 H), 7.22 (dd, J = 7.8, 2.3 Hz, 1 H). GC–MS (EI+): m/z = 139 [M]+, 93, 65. 4-Hydroxybenzoic Acid (2g) Yield 32.9 mg, 79%; colorless solid. 1H NMR (500 MHz, DMSO-d 6): δ = 7.80 (d, J = 8.6 Hz, 2 H), 6.84 (d, J = 8.6 Hz, 2 H). GC–MS (EI+): m/z = 138 [M]+, 121, 93. 4-Hydroxymethyl Benzoate (2h) Yield 37.7 mg, 83%; colorless solid. 1H NMR (500 MHz, CDCl3): δ = 7.95 (d, J = 8.9 Hz, 2 H), 6.89 (d, J = 8.9 Hz, 2 H), 6.42 (br s, 1 H), 3.90 (s, 3 H). DART-MS: m/z = 153.06 [M + H]+. 4-Hydroxybenzaldehyde (2i) Yield 26.9 mg, 73%; colorless solid. 1H NMR (500 MHz, CDCl3): δ = 9.86 (s, 1 H), 7.83 (d, J = 8.6 Hz, 2 H), 6.99 (d, J = 8.6 Hz, 2 H), 6.49 (br s, 1 H). DART-MS: m/z = 123.04 [M + H]+. 4-tert-Butylphenol (2j) Yield 41.9 mg, 93%; colorless solid. 1H NMR (500 MHz, CDCl3): δ = 7.25 (d, J = 8.5 Hz, 2 H), 6.77 (d, J = 8.5 Hz, 2 H), 5.11 (br s, 1 H), 1.29 (s, 9 H). GC–MS (EI+): m/z = 150 [M]+, 135, 107. 4-Methoxyphenol (2k) Yield 31.2 mg, 83%; colorless solid. 1H NMR (500 MHz, CDCl3): δ = 6.77 (m, 4 H), 5.48 (br s, 1 H), 3.76 (s, 3 H). DART-MS: m/z = 125.06 [M + H]+. 2,6-Dimethylphenol (2l) Yield 19.2 mg, 52%; colorless solid. 1H NMR (400 MHz, CDCl3): δ = 7.19 (d, J = 8.9 Hz, 2 H), 6.77 (d, J = 8.9 Hz, 1 H), 4.63 (s, 1 H), 2.25 (s, 6 H). GC–MS (EI+): m/z = 122 [M]+, 107, 91. 2-Naphthol (2m) Yield 31.1 mg, 72%; pale yellow solid. 1H NMR (500 MHz, CDCl3): δ = 7.75 (t, J = 9.2 Hz, 2 H), 7.67 (d, J = 8.6 Hz, 1 H), 7.42 (t, J = 7.7 Hz, 1 H), 7.32 (t, J = 7.2 Hz, 2 H), 7.13 (d, J = 2.9 Hz, 1 H), 7.09 (dd, J = 8.6, 2.3 Hz, 1 H), 5.13 (s, 1 H). DART-MS: m/z = 145.07 [M + H]+. 3-Hydroxypyridine (2n) Yield 15.2 mg, 53%; colorless solid. 1H NMR (500 MHz, CDCl3): δ = 8.29 (d, J = 3.0 Hz, 1 H), 8.09 (dd, J = 5.0, 1.5 Hz, 1 H), 7.33 (m, 1 H), 7.29 (dd, J = 8.0, 5.0 Hz, 1 H). GC–MS (EI+): m/z = 95 [M]+, 67, 39.