Synlett 2014; 25(18): 2629-2635
DOI: 10.1055/s-0034-1379019
letter
© Georg Thieme Verlag Stuttgart · New York

Regio- and Diastereoselective Cycloaddition of Azomethine Ylides with Benzylidenemalononitrile: Assembly of a New Set of Multisubstituted 4,4-Dicyanopyrrolidine-2-carboxylate and Nornicotine Scaffolds

Vadla Rajkumar
Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab 140306, India   Fax: +91(172)2240266   Email: sababu@iisermohali.ac.in
,
Srinivasarao Arulananda Babu*
Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab 140306, India   Fax: +91(172)2240266   Email: sababu@iisermohali.ac.in
› Author Affiliations
Further Information

Publication History

Received: 02 July 2014

Accepted after revision: 03 August 2014

Publication Date:
25 August 2014 (online)


Abstract

Regio- and diastereoselective 1,3-dipolar cycloaddition reaction of azomethine ylides derived from N-benzylideneiminoglycinates in the presence of catalytic quantities of silver salts with benzylidenemalononitriles (Knöevenagel adducts) is reported. The reaction of azomethine ylides with benzylidenemalononitriles gave a new class of 3,5-aryl/heteroaryl-substituted 4,4-dicyanopyrrolidine-2-carboxylate (proline) and nornicotine scaffolds having three stereocenters, with very good diastereoselectivity. The stereochemistry of representative major diastereomers was confirmed by single crystal X-ray structure analyses.

Supporting Information

 
  • References and Notes

    • 1a Pearson WH, Stoy P. Synlett 2003; 903
    • 1b Hanessian S. ChemMedChem 2006; 1: 1300
    • 1c Pyne SG, Tang M.-Y. Curr. Org. Chem. 2005; 9: 1393
    • 1d Liddell JR. Nat. Prod. Rep. 2002; 19: 773
    • 1e Nair V, Suja TD. Tetrahedron 2007; 63: 12247
    • 1f Sardina FJ, Rapoport H. Chem. Rev. 1996; 96: 1825
    • 3a Han M.-Y, Jia J.-Y, Wang W. Tetrahedron Lett. 2014; 55: 784
    • 3b Ouchi H, Asahina A, Asakawa T, Inai M, Hamashima Y, Kan T. Org. Lett. 2014; 16: 1980
    • 3c Kang Y.-B, Tang Y, Sun X.-L. Org. Biomol. Chem. 2006; 4: 299
    • 4a Harwood LM, Vickers RJ In Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products. Padwa A, Pearson WH. Wiley; New York: 2003: 169-252
    • 4b Padwa A In 1,3-Dipolar Cycloaddition Chemistry . Wiley; New York: 1984
    • 5a Adrio J, Carretero JC. Chem. Commun. 2011; 47: 6784
    • 5b Coldham I, Hufton R. Chem. Rev. 2005; 105: 2765
    • 5c Pandey G, Banerjee P, Gadre SR. Chem. Rev. 2006; 106: 4484
    • 5d Nájera C, Sansano J. Org. Biomol. Chem. 2009; 7: 4567
    • 5e Chen Q.-A, Wang D.-S, Zhou Y.-G. Chem. Commun. 2010; 46: 4043
    • 5f Bonin B, Chauveau A, Micouin L. Synlett 2006; 2349
    • 5g Grigg R, Kemp J, Sheldrick G, Trotter J. Chem. Commun. 1978; 109
    • 5h Grigg R, Kemp J. Tetrahedron Lett. 1980; 21: 2461
    • 6a Liu Y.-K, Liu H, Du W, Yue L, Chen Y.-C. Chem. Eur. J. 2008; 14: 9873
    • 6b Nájera C, de Gracia Retamosa M, Martín-Rodríguez M, Sansano JM, de Cózar A, Cossío FP. Eur. J. Org. Chem. 2009; 5622
    • 6c Nájera C, de Gracia Retamosa M, Sansano JM. Angew. Chem. Int. Ed. 2008; 47: 6055
    • 6d Gothelf AS, Gothelf KV, Hazell RG, Jørgensen KA. Angew. Chem. Int. Ed. 2002; 41: 4236
    • 6e Kumar A, Gupta G, Srivastava S. J. Comb. Chem. 2010; 12: 458
    • 6f Chaulagain MR, Felten AE, Gilbert K, Aron ZD. J. Org. Chem. 2013; 78: 9471
    • 6g Garner P, Ümit Kaniskan H. J. Org. Chem. 2005; 70: 10868
    • 6h Carson CA, Kerr MA. J. Org. Chem. 2005; 70: 8242
    • 6i Wang C.-J, Liang G, Xue Z.-Y, Gao F. J. Am. Chem. Soc. 2008; 130: 17250
    • 6j Zeng W, Chen G.-Y, Zhou Y.-G, Li Y.-X. J. Am. Chem. Soc. 2007; 129: 750
    • 6k Mancebo-Aracil J, Nájera C, Sansano JM. Org. Biomol. Chem. 2013; 11: 662

    • For the synthesis of nicotine analogues through three-component azomethine ylide cycloaddition, see:
    • 6l Ghandi M, Taheri A, Abbasi A. J. Heterocycl. Chem. 2010; 47: 611
    • 6m Ghandi M, Rezaei SJ. T, Yari A, Taheri A. Tetrahedron Lett. 2008; 49: 5899
    • 6n Rezaei SJ. T, Nabid MR, Yari A, Ng SW. Ultrason. Sonochem. 2011; 18: 49
    • 6o Liu J, Sun H, Liu X, Ouyang L, Kang T, Xie Y, Wang X. Tetrahedron Lett. 2012; 53: 2336
    • 6p Joucla M, Hamelin J. Tetrahedron Lett. 1978; 2885
    • 7a Narayan R, Potowski M, Jia Z.-J, Antonchick AP, Waldmann H. Acc. Chem. Res. 2014; 47: 1296
    • 7b Calaza MI, Cativiela C. Eur. J. Org. Chem. 2008; 3427
    • 7c Purushothaman S, Prasanna R, Niranjana P, Raghunathan R, Nagaraj S, Rengusamy R. Bioorg. Med. Chem. Lett. 2010; 20: 7291
    • 7d Karthikeyan K, Kumar RS, Muralidharan D, Perumal PT. Tetrahedron Lett. 2009; 50: 7175
    • 7e Rajkumar V, Aslam NA, Reddy C, Babu SA. Synlett 2012; 23: 549

      For the synthesis of arylated pyrrolidines and their biological activity, see:
    • 8a Buchholz M, Reißig H.-U. Eur. J. Org. Chem. 2003; 3524
    • 8b Jae H.-S, Winn M, von Geldern TW, Sorensen BK, Chiou WJ, Nguyen B, Marsh KC, Opgenorth TJ. J. Med. Chem. 2001; 44: 3978
    • 8c Winn M, von Geldern TW, Opgenorth TJ, Jae H.-S, Tasker AS, Boyd SA, Kester JA, Mantei RA, Bal R, Sorensen BK, Wu-Wong JR, Chiou WJ, Dixon DB, Novosad EI, Hernandez L, Marsh KC. J. Med. Chem. 1996; 39: 1039
    • 8d Shih N.-Y, Lupo AT. Jr, Aslanian R, Orlando S, Piwinski JJ, Green MJ, Ganguly AK, Clark MA, Tozzi S, Kreutner W, Hey JA. J. Med. Chem. 1995; 38: 1593
    • 8e Baldwin JE, Fryer AM, Pritchard GJ. J. Org. Chem. 2001; 66: 2588

      For selected papers on the synthesis of arylated pyrrolidines and their biological activity, see:
    • 9a Enyedy IJ, Zaman WA, Sakamuri S, Kozikowski AP, Johnson KM, Wang S. Bioorg. Med. Chem. 2001; 1113
    • 9b Burton G, Ku TW, Carr TJ, Kiesow T, Sarisky RT, Lin-Goerke J, Baker A, Earnshaw DL, Hofmann GA, Keenan RM, Dhanak D. Bioorg. Med. Chem. Lett. 2005; 15: 1553
    • 9c Jean A, Blanchet J, Rouden J, Maddaluno J, De Paolis M. Chem. Commun. 2013; 49: 1651
    • 9d Barker G, McGrath JL, Klapars A, Stead D, Zhou G, Campos KR, O’Brien P. J. Org. Chem. 2011; 76: 5936
    • 9e Blanco-Ania D, Hermkens PH. H, Sliedregt LA. J. M, Scheeren HW, Rutjes FP. J. T. Tetrahedron 2009; 65: 5393
    • 9f Raikar S, Pal BK, Malinakova HC. Synthesis 2012; 44: 1983
    • 9g Baxendale IR, Brusotti G, Matsuoka M, Ley SV. J. Chem. Soc., Perkin Trans. 1 2002; 143

      For papers on the synthesis of biologically active arylated pyrrolidines, see:
    • 10a Slater MJ, Amphlett EM, Andrews DM, Bravi G, Burton G, Cheasty AG, Corfield JA, Ellis MR, Fenwick RH, Fernandes S, Guidetti R, Haigh D, Hartley D, Howes PD, Jackson DL, Jarvest RL, Lovegrove VL. H, Medhurst KJ, Parry NR, Price H, Shah P, Singh OM. P, Stocker R, Thommes P, Wilkinson C, Wonacott A. J. Med. Chem. 2007; 50: 897
    • 10b Mayhoub AS. Bioorg. Med. Chem. 2012; 20: 3150
    • 10c Martín-Rodríguez M, Nájera C, Sansano JM, de Cózar A, Cossío FP. Beilstein J. Org. Chem. 2011; 7: 988
    • 10d Stocker B, Dangerfield EM, Win-Mason AL, Haslett GW, Timmer MS. Eur. J. Org. Chem. 2010; 1615
    • 10e Coldham I, Robinson SP, Baxter CA. Synlett 2012; 23: 2405
  • 11 CCDC 1011746 (8c), 1011747 (8d), 1011744 (9c), and 1011745 (9b) contain the supplementary crystallographic data for this paper. These data have been deposited at the Cambridge Crystallographic Data Centre.
  • 12 General Procedure: Under a nitrogen atmosphere, AgOAc (10 mol%) in anhydrous CH2Cl2 (1 mL) was stirred for 30 min. To this mixture were sequentially added a solution of N-benzylideneiminoglycinates (0.5 mmol) and benzylidenemalononitrile (0.5 mmol) in CH2Cl2 (4 mL), and Et3N (40 mol%), and the mixture was stirred for 12 h at r.t. in the absence of light. The reaction mixture was filtered through a Celite pad, the filtrate was evaporated, and the residue was purified by column chromatography. In all the cases, attempts were made to separate the major and minor isomers. The major isomer was obtained in pure form in the majority of the reactions, but it did not prove possible to isolate the minor isomers in pure form. In some cases, it was not possible to separate the major and minor isomers. Analytical Data for 7b: By following the general procedure, 7b was obtained after purification by silica column chromatography (EtOAc–hexane, 30:70). White solid; mp 170–172 °C. FT-IR (KBr): 3343, 2902, 1737, 1247 cm–1. 1H NMR (CDCl3, 400 MHz): δ = 7.57 (d, J = 8.1 Hz, 2 H), 7.46 (d, J = 8.1 Hz, 2 H), 7.31–7.27 (m, 4 H), 4.92 (s, 1 H), 4.51 (d, J = 8.1 Hz, 1 H), 4.15 (d, J = 8.1 Hz, 1 H), 3.76 (s, 3 H), 2.97 (br. s, 1 H), 2.41 (s, 6 H). 13C NMR (CDCl3, 100 MHz): δ = 173.4, 140.1, 139.6, 130.6, 130.0, 129.7, 129.6, 128.3, 127.2, 113.8, 111.7, 70.4, 61.0, 58.1, 53.1, 50.9, 21.3, 21.2. HRMS (ESI): m/z [M + H]+ calcd for C22H22N3O2: 360.1712; found: 360.1716. Analytical Data for 7c: By following the general procedure described above, 7c was obtained after purification by silica column chromatography (EtOAc–hexane, 30:70). White solid; mp 99–101 °C. FTIR (KBr): 3345, 2983, 1731, 1218 cm–1. 1H NMR (CDCl3, 400 MHz): δ = 7.58 (d, J = 8.1 Hz, 2 H), 7.46 (d, J = 8.1 Hz, 2 H), 7.30–7.27 (m, 4 H), 4.93 (s, 1 H), 4.47 (d, J = 8.1 Hz, 1 H), 4.26–4.16 (m, 2 H), 4.13 (d, J = 8.1 Hz, 1 H), 2.96 (br. s, 1 H), 2.41 (s, 6 H), 1.21 (t, J = 7.1 Hz, 3 H); 13C NMR (CDCl3, 100 MHz): δ = 172.8, 140.0, 139.5, 130.7, 129.9, 129.8, 129.6, 128.3, 127.2, 113.9, 111.7, 70.4, 62.2, 61.2, 58.2, 50.9, 21.3, 21.3, 14.1. HRMS (ESI): m/z [M + H]+ calcd for C23H24N3O2: 374.1869; found: 374.1873. The cycloaddition reaction of azomethine ylides with 10a,b gave single isomers 11a,b and 12a,b. At this stage, it was not possible to assign the stereochemistry of the newly formed C3-center in the products 11a,b and 12a,b. The diastereomeric ratios given for the products 11a,b and 12a,b are based on their respective starting materials 10a,b obtained from 7a,c.