Gas-Phase Synthesis of Pyrazolo[3,4-b]pyridin-4-ones

Martha Mackay
Andrew Nortcliffe
Hamish McNab ${ }^{1}$
Alison N. Hulme*
EastCHEM School of Chemistry, The University of Edinburgh,
West Mains Road, Edinburgh EH9 3JJ, UK
Alison.Hulme@ed.ac.uk

Received: 18.06.2014
Accepted after revision: 18.08.2014
Published online: 02.10.2014
DOI: 10.1055/s-0034-1378666; Art ID: ss-2014-n0372-op
License terms: (CC)
Abstract Flash vacuum pyrolysis (FVP) at $500-600^{\circ} \mathrm{C}$ of 1 -substituted pyrazolylaminomethylene derivatives of Meldrum's acid provides 1-substituted pyrazolo[3,4-b]pyridin-4-ones in high yields. If the 1 -substituent is a tert-butyl group, FVP at $750-850^{\circ} \mathrm{C}$ causes elimination of 2-methyl-1-propene to give the parent pyrazolo[3,4-b]pyridin-4-one.

Key words gas-phase reactions, pericyclic reactions, heterocycles, Meldrum's acid, medicinal chemistry

There are very few references to 1 -unsubstituted pyra-zolo[3,4-b]pyridin-4-ones 1 in the literature ${ }^{2}$ and all known derivatives except the parent compound $\mathbf{1}\left(R=R^{\prime}=H\right)$ have a substituent in the 6-position. Potential functionalization of the 4 -position (e.g., via the triflate or the 4 -chloro compound) would provide 4 -substituted pyrazolo[3,4-b]pyridines 2 (Figure 1), which have shown diverse application in medicinal chemistry. ${ }^{3}$ On the other hand, substitution at the 1-position generally results in loss of biological activity due to the disruption of the hydrogen bonding regime. ${ }^{4}$

2
Figure 1 1-Unsubstituted pyrazolo[3,4-b]pyridin-4-ones 1 and 4-substituted pyrazolo[3,4-b]pyridines 2

In earlier work, we explored a potential route to $\mathbf{1}$ by flash vacuum pyrolysis (FVP) of Meldrum's acid derivatives [e.g., $3\left(\mathrm{R}^{1}=\mathrm{H}\right)$], but cyclization of the imidoylketene intermediate $4\left(\mathrm{R}^{1}=\mathrm{H}\right)$ occurred exclusively at the adjacent ni-
trogen atom to provide a useful route to the pyrazolo[1,5a]pyrimidine system 5 (Scheme 1). ${ }^{5}$ Clearly this route must be blocked to provide pyrazolo[3,4-b]pyridin-4-ones.

Scheme 1

The present work therefore had a range of objectives. First, 3 ($\mathrm{R}^{1}=$ alkyl or aryl) were synthesized and pyrolyzed to ensure that, in the absence of the pyrazole NH, cyclization onto the adjacent carbon atom to give $\mathbf{1}(\mathrm{R}=1$-alkyl or 1 -aryl) would take place (Scheme 1), as observed in many related systems. ${ }^{6}$ Second, we explored the design of a thermal N -protecting group, which would remain at low furnace temperatures, but be selectively removed at higher furnace temperatures to provide N -unsubstituted pyrazolopyridinones $\mathbf{1}\left(\mathrm{R}^{1}=H\right)$. If the previous stages were successful, we aimed finally to functionalize the 4 -position of the pyrazolo[3,4-b]pyridin-4-ones to establish that the route has significant potential for the synthesis of pyrazolo[3,4b]pyridines 2.

The 1 -substituted and 1,3-disubstituted 3-aminopyrazoles 6a-f (Figure 2) were either commercially available or were synthesized by known methods. Compounds $\mathbf{6 c},{ }^{7} \mathbf{6 e},{ }^{8}$ and $6 \mathbf{f}^{9 a}$ are known only in patents or are formed in poor yield; ${ }^{9 b}$ their full characterization data are given here. Compound $\mathbf{6 c}$ was formed as a $5: 1$ mixture of $\mathbf{6 c}$ and its 1 -tert-butyl-3-amino isomer, which was taken on to the next stage without purification. Reaction of 6a-f with methoxymethylene Meldrum's acid in acetonitrile gave the aminomethylene derivatives 3a-f (Figure 2) in 89-99\% yield and (generally) high purity. Compound $3 \mathbf{c}$ was purified by recrystallization before pyrolysis.

6a $R^{1}=M e, R^{2}=H$

$$
\mathbf{6 b} \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}
$$

$$
6 \mathrm{c} \mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{H}
$$

$$
6 \mathbf{d} \mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me}
$$

$$
6 e R^{1}=t-B u, R^{2}=P h
$$

$$
\text { 6f } \mathrm{R}^{1}=\mathrm{R}^{2}=t-\mathrm{Bu}
$$

3a $R^{1}=M e, R^{2}=H$
3b $R^{1}=P h, R^{2}=M e$
3c $\mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{H}$
3d $\mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me}$
$3 \mathrm{e} \mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Ph}$
3f $\mathrm{R}^{1}=\mathrm{R}^{2}=t-\mathrm{Bu}$

Figure 2 1,3-Disubstituted 3-aminopyrazoles 6 and aminomethylene derivatives 3

FVP of $\mathbf{3 a}$ and $\mathbf{3 b}$ at $600^{\circ} \mathrm{C}$ (0.03 Torr) gave 1-methylpyr-azolo[3,4-b]pyridin-4-one (1aa) (92\%) and its 3-methyl-1phenyl analogue 1ba (95\%), respectively, as involatile solids that crystallized at the exit point of the furnace. It is clear, therefore, that blocking the 1-position of the pyrazole has the effect of diverting the cyclization to the adjacent carbon atom to provide the target pyrazolopyridinones.

In order to access the 1 -unsubstituted pyrazolo[3,4b]pyridines $1\left(\mathrm{R}^{1}=\mathrm{H}\right)$, a thermally removable N -protecting group was required. If a retro-ene reaction is possible, an N -tert-butyl group is ideal because the only co-product is 2 -methyl-1-propene. We have exploited this in the pyridazin3 -one series ${ }^{10}$ and it is also known that N-tert-butylpyrazole (7) loses 2-methyl-1-propene at high temperatures (Scheme 2). ${ }^{11} \mathrm{~A}$ temperature profile of this reaction (Figure 3) shows that, in our apparatus, at temperatures below $600^{\circ} \mathrm{C}$ the N -alkyl product 7 is formed exclusively whereas at temperatures above $850^{\circ} \mathrm{C}$, only the deprotected product $\mathbf{8}$ was formed. It was therefore anticipated that FVP of 3c-f in the range $500-600^{\circ} \mathrm{C}$ should provide the N-tert-butyl products $1\left(\mathrm{R}^{1}=t\right.$-Bu) whereas FVP in the range $750-850{ }^{\circ} \mathrm{C}$ should provide the deprotected products $1\left(\mathrm{R}^{1}=H\right)$.

These predictions were borne out in practice. FVP of $\mathbf{3 c}$ f at $500^{\circ} \mathrm{C}$ gave the pyrazolopyridinones 1ca, 1da, 1ea, and 1fa (Figure 4) in $83-97 \%$ yields and at $750-850^{\circ} \mathrm{C}$ gave the deprotected products $\mathbf{1 c b}$ and $\mathbf{1 d b}$ in $67-82 \%$ yields whilst the more highly substituted derivatives $\mathbf{1 e b}$ and $\mathbf{1 f b}$ were

7
Scheme 2

Figure 3 Temperature-conversion plot for FVP of 7
obtained as more complex mixtures. ${ }^{12}$ N-Unsubstituted pyrazolopyridinones show exceptionally broad peaks in their NMR spectra due to tautomerization, but the two NH resonances at ca. $\delta_{H}=12.8-13.8$ and 11.5-11.8 are characteristic, as previously reported. ${ }^{2 a}$

1aa $R^{1}=M e, R^{2}=H$
1ba $R^{1}=P h, R^{2}=M e$
1ca $R^{1}=t-B u, R^{2}=H \quad$ 1cb $R^{1}=H, R^{2}=H$
1da $R^{1}=t-B u, R^{2}=M e \quad 1 d b R^{1}=H, R^{2}=M e$
1ea $R^{1}=t-B u, R^{2}=P h \quad$ 1eb $R^{1}=H, R^{2}=P h$
1fa $\mathrm{R}^{1}=\mathrm{R}^{2}=t$ - $\mathrm{Bu} \quad$ 1fb $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=t-\mathrm{Bu}$
Figure 4 Pyrazolopyridinones 1
As an alternative to the one-pass cyclization-deprotection described above, the protecting group can be retained prior to functionalization of the 4 -oxo substituent. This strategy is illustrated for the 3-phenyl series $\mathbf{1 e}$, which was chosen as it might prove unreactive owing to peri interactions with the 3 -substituent.

Thus, treatment of 1ea with phosphoryl chloride gave the 4 -chloro compound $\mathbf{9}$ (99\%), which could either be thermally deprotected to $\mathbf{1 0}$ (87\%), or reacted further. For example, reaction of $\mathbf{9}$ with pyrrolidine in the absence of a catalyst provided a low yield of the pyrrolidino compound $\mathbf{1 1}$ (37\%); alternatively, reaction with aniline under Buchwald-

Hartwig conditions gave the anilino compound 12 (87\%), which could be thermally deprotected to 13 (72\%) (Scheme $3)$.

Scheme 3

In conclusion, the work described here has provided a flexible gas-phase route to pyrazolo[3,4-b]pyridin-4-ones and pyrazolo[3,4-b]pyridines. An important feature of the strategy is the use of an N-tert-butyl group, which may be retained at low furnace temperatures (allowing functionalization of the 4-oxo group) or removed at high furnace temperatures to provide a one-pass route to N -unsubstituted analogues.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 500 or 250 MHz and 125 or 63 MHz , respectively, unless otherwise stated. Chemical shifts are given in ppm relative to TMS. Mass spectra were recorded under electron impact conditions.

5-Amino-1-tert-butyl-1H-pyrazole (6c) ${ }^{7}$

tert-Butylhydrazine hydrochloride ($5.99 \mathrm{~g}, 48.1 \mathrm{mmol}$) was added to $\mathrm{EtOH}(60 \mathrm{~mL})$ to form a slurry. To this was added $\mathrm{NaOAc}(7.93 \mathrm{~g}, 96.7$ mmol) and 2-chloroacrylonitrile ($5 \mathrm{~mL}, 62.6 \mathrm{mmol}$). The solution was heated to $80^{\circ} \mathrm{C}$ for 18 h , cooled, and the solvent removed in vacuo. The residue was slowly diluted with distilled $\mathrm{H}_{2} \mathrm{O}(35 \mathrm{~mL})$ and partitioned between sat. aq $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and $\mathrm{EtOAc}(40 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with EtOAc ($2 \times 20 \mathrm{~mL}$). The organic layers were combined, washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent removed in vacuo to afford a red oil; yield: $7.95 \mathrm{~g}(91 \%)$; bp $93-94^{\circ} \mathrm{C} / 0.9$ Torr (yellow liquid). The product was a $5: 1$ mixture of the title compound $\mathbf{6 c}$ and its 1-tert-butyl-3-amino isomer. The crude product was used to prepare the Meldrum's acid derivative $\mathbf{3 c}$, which was purified by recrystallization (see below).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=7.21\left(\mathrm{~d},{ }^{3} \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.57\left(\mathrm{~d},{ }^{3} \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 3.60 (br s, 2 H), 1.65 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=144.5\left(\mathrm{C}_{\mathrm{q}}\right), 136.6(\mathrm{CH}), 94.1(\mathrm{CH}), 58.5\left(\mathrm{C}_{\mathrm{q}}\right), 29.3$ $\left(3 \mathrm{CH}_{3}\right)$.
MS: $m / z(\%)=139\left(M^{+}, 45\right), 83\left(M-C_{4} H_{10}, 100\right)$.

HRMS: m / z calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{~N}_{3}\left(\mathrm{M}^{+}\right)$: 139.1104; found: 139.1103.

5-Amino-1-tert-butyl-3-phenyl-1 H-pyrazole (6e) ${ }^{8}$

A solution of 3-oxo-3-phenylpropanenitrile ($1.5 \mathrm{~g}, 10.3 \mathrm{mmol}$) in $\mathrm{EtOH}(10 \mathrm{~mL})$ was added to a slurry of tert-butylhydrazine hydrochloride ($2.6 \mathrm{~g}, 20.7 \mathrm{mmol}$) in EtOH (35 mL) and the solution was heated to reflux with stirring for 18 h . The solution was cooled, concentrated and the residue was partitioned between sat. aq $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and EtOAc (30 mL). The organic layer was separated and the aqueous layer was extracted with $\operatorname{EtOAc}(2 \times 20 \mathrm{~mL})$. The organic layers were combined, washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent removed in vacuo to give $\mathbf{6 e}$ as a pale yellow solid; yield: 2.2 g (97\%); $\mathrm{mp} 100-102^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta=7.64\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.33\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 2\right.$ H), 7.22 (t, $\left.{ }^{3}=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.79$ (s, 1 H), 4.97 ($\mathrm{s}, 2 \mathrm{H}$), 1.58 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta=148.1\left(\mathrm{C}_{\mathrm{q}}\right), 146.1\left(\mathrm{C}_{\mathrm{q}}\right), 135.0\left(\mathrm{C}_{\mathrm{q}}\right), 128.8(2$ $\mathrm{CH}), 127.1(\mathrm{CH}), 125.0(2 \mathrm{CH}) 89.2(\mathrm{CH}), 58.3\left(\mathrm{C}_{\mathrm{q}}\right), 40.1\left(3 \mathrm{CH}_{3}\right)$.
MS: $m / z(\%)=215\left(\mathrm{M}^{+}, 25\right), 159(100)$.
HRMS: m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3}\left(\mathrm{M}^{+}\right)$: 215.1417; found: 215.1416.

5-Amino-1,3-di-tert-butyl-1H-pyrazole (6f) ${ }^{9}$

A solution of 4,4-dimethyl-3-oxovaleronitrile ($1.75 \mathrm{~g}, 14.0 \mathrm{mmol}$) in $\mathrm{EtOH}(10 \mathrm{~mL})$ was added to a slurry of tert-butylhydrazine hydrochloride (3.5 g .28 .1 mmol) in EtOH (35 mL) and the solution was heated to reflux with stirring for 18 h . The solution was cooled, concentrated, and the residue was partitioned between sat. aq $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and EtOAc (30 mL). The organic layer was separated and the aqueous layer was extracted with $\operatorname{EtOAc}(2 \times 20 \mathrm{~mL})$. The organic layers were combined, washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent removed to give $\mathbf{6 f}$ as a pale orange solid; yield: 1.8 g (66\%); mp 67$69{ }^{\circ} \mathrm{C}\left(\right.$ Lit. $\left..^{9 \mathrm{a}} \mathrm{mp} 64-66{ }^{\circ} \mathrm{C}\right)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=5.48(\mathrm{~s}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 18 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=157.8\left(\mathrm{C}_{\mathrm{q}}\right), 144.1\left(\mathrm{C}_{\mathrm{q}}\right), 90.2(\mathrm{CH}), 58.2\left(\mathrm{C}_{\mathrm{q}}\right), 44.7$ $\left(\mathrm{C}_{\mathrm{q}}\right), 30.4\left(3 \mathrm{CH}_{3}\right), 29.5\left(3 \mathrm{CH}_{3}\right)$.
Spectra differ significantly from those reported, ${ }^{9 b}$ but were recorded in a different solvent.
MS: $m / z(\%)=195\left(\mathrm{M}^{+}, 29\right), 139(63), 124(100)$.
HRMS: m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{~N}_{3}\left(\mathrm{M}^{+}\right)$: 195.1730; found: 175.1728.

Meldrum's Acid Derivatives; General Procedure

5-(Methoxymethylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (0.5 g , 2.9 mmol) was added to a stirred solution of the 5 -aminopyrazole $\mathbf{6}$ $(2.9 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$. After stirring for 1 h , the solvent was removed in vacuo to complete the precipitation of the product.

5-(1-Methyl-1H-pyrazol-5-ylaminomethylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (3a)

Treatment of $\mathbf{6 a}$ using the general procedure gave $\mathbf{3 a}$; yield: 0.71 g (98\%); yellow solid; mp $144^{\circ} \mathrm{C}(\mathrm{MeOH})$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=11.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.34\left(\mathrm{~d},{ }^{3} \mathrm{~J}=13.3 \mathrm{~Hz}, 1\right.$ H), 7.34 ($\mathrm{d},{ }^{3} \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $6.18\left(\mathrm{~d},{ }^{3} \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$), $3.85(\mathrm{~s}, 3 \mathrm{H}), 1.75$ (s, 6 H).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=165.7\left(\mathrm{C}_{\mathrm{q}}\right), 162.6\left(\mathrm{C}_{\mathrm{q}}\right), 154.7(\mathrm{CH}), 139.1(\mathrm{CH})$, $138.0\left(\mathrm{C}_{\mathrm{q}}\right), 105.6\left(\mathrm{C}_{\mathrm{q}}\right), 95.3(\mathrm{CH}), 88.9\left(\mathrm{C}_{\mathrm{q}}\right), 35.4\left(\mathrm{CH}_{3}\right), 27.1\left(2 \mathrm{CH}_{3}\right)$.
MS: $m / z(\%)=251\left(\mathrm{M}^{+}, 16\right), 193$ (100), 149 (14), 122 (40).
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 52.6; $\mathrm{H}, 5.2$; $\mathrm{N}, 16.75$. Found: C, 52.65 ; H, 5.35; N, 16.8 .

5-(3-Methyl-1-phenyl-1H-pyrazol-5-ylaminomethylene)-2,2-di-methyl-1,3-dioxane-4,6-dione (3b)
Treatment of $\mathbf{6 b}$ using the general procedure gave $\mathbf{3 b}$; yield: 0.90 g (95\%); yellow solid; mp $167{ }^{\circ} \mathrm{C}(\mathrm{MeOH})$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=11.45\left(\mathrm{~d},{ }^{3} \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.38\left(\mathrm{~d},{ }^{3} \mathrm{~J}=13.4 \mathrm{~Hz}, 1\right.$ H), 7.56-7.42 (m, 5 H$), 6.17$ ($\mathrm{s}, 1 \mathrm{H}$), 2.34 ($\mathrm{s}, 3 \mathrm{H}), 1.71$ ($\mathrm{s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=165.3\left(\mathrm{C}_{\mathrm{q}}\right), 162.7\left(\mathrm{C}_{\mathrm{q}}\right), 153.1(\mathrm{CH}), 150.1\left(\mathrm{C}_{\mathrm{q}}\right)$, $138.3\left(\mathrm{C}_{\mathrm{q}}\right), 136.8\left(\mathrm{C}_{\mathrm{q}}\right), 130.0(2 \mathrm{CH}), 128.8(\mathrm{CH}), 124.8(2 \mathrm{CH}), 105.5$ $\left(\mathrm{C}_{\mathrm{q}}\right), 94.3(\mathrm{CH}), 88.8\left(\mathrm{C}_{\mathrm{q}}\right), 27.1\left(2 \mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right)$.
MS: $m / z(\%)=327\left(\mathrm{M}^{+}, 23\right), 269(100), 225(22), 184(74), 156$ (22).
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 62.4; H, 5.25; $\mathrm{N}, 12.85$. Found: C, 62.3; H, 5.15; N, 12.75.

5-(1-tert-Butyl-1H-pyrazol-5-ylamino)methylene-2,2-dimethyl-1,3-dioxane-5,6-dione (3c)

Treatment of $\mathbf{6 c}$ using the general procedure gave 3c; yield: 0.985 g (97\%); yellow solid; mp $84^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=11.53\left(\mathrm{~d},{ }^{3} \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.33\left(\mathrm{~d},{ }^{3} \mathrm{~J}=13.4 \mathrm{~Hz}, 1\right.$ H), $7.41\left(\mathrm{~d},{ }^{3} J=1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.23\left(\mathrm{~d},{ }^{3} \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.77(\mathrm{~s}, 6 \mathrm{H}), 1.70$ (s, 9 H).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=165.6\left(\mathrm{C}_{\mathrm{q}}\right), 162.9\left(\mathrm{C}_{\mathrm{q}}\right), 154.7(\mathrm{CH}), 137.5\left(\mathrm{C}_{\mathrm{q}}\right)$, $137.3(\mathrm{CH}), 105.6\left(\mathrm{C}_{\mathrm{q}}\right), 97.8(\mathrm{CH}), 88.4\left(\mathrm{C}_{\mathrm{q}}\right), 60.3\left(\mathrm{C}_{\mathrm{q}}\right), 29.8\left(3 \mathrm{CH}_{3}\right), 27.3$ ($2 \mathrm{CH}_{3}$).
MS: $m / z(\%)=293\left(\mathrm{M}^{+}, 21\right), 235(47), 179$ (59), 161 (100).
HRMS: m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$: 293.1381; found: 293.1384 .

5-(1-tert-Butyl-3-methyl-1H-pyrazol-5-ylamine)-2,2-dimethyl-1,3-dioxane-4,6-dione (3d)

Treatment of $\mathbf{6 d}$ using the general procedure gave 3d; yield: 0.88 g (99\%); yellow solid; mp $82{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=11.47\left(\mathrm{br} \mathrm{d},{ }^{3} \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.29\left(\mathrm{~d},{ }^{3} \mathrm{~J}=13.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 6 \mathrm{H}), 1.66(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=165.9\left(\mathrm{C}_{\mathrm{q}}\right), 162.9\left(\mathrm{C}_{\mathrm{q}}\right), 154.4(\mathrm{CH}), 146.2\left(\mathrm{C}_{\mathrm{q}}\right)$, $137.7\left(\mathrm{C}_{\mathrm{q}}\right), 105.5\left(\mathrm{C}_{\mathrm{q}}\right), 97.1(\mathrm{CH}), 88.1\left(\mathrm{C}_{\mathrm{q}}\right), 59.7\left(\mathrm{C}_{\mathrm{q}}\right), 29.8\left(3 \mathrm{CH}_{3}\right), 27.1$ $\left(2 \mathrm{CH}_{3}\right), 13.9\left(\mathrm{CH}_{3}\right)$.
MS: $m / z(\%)=307\left(\mathrm{M}^{+}, 21\right), 249(100), 175$ (68).
HRMS: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$: 307.1527; found: 307.1533.

5-(1-tert-Butyl-3-phenyl-1H-pyrazol-5-ylamino)methylene-2,2-dimethyl-1,3-dioxane-4,6-dione (3e)

Treatment of $\mathbf{6 e}$ using the general procedure gave $\mathbf{3 e}$; yield: 0.97 g (98\%); yellow solid; mp $152{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=11.59\left(\mathrm{~d},{ }^{3} \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.43\left(\mathrm{~d},{ }^{3} \mathrm{~J}=13.4 \mathrm{~Hz}, 1\right.$ H), $7.80\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.44\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.35\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 6 \mathrm{H}), 1.77(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=166.0\left(\mathrm{C}_{\mathrm{q}}\right), 162.9\left(\mathrm{C}_{\mathrm{q}}\right), 154.4(\mathrm{CH}), 148.5\left(\mathrm{C}_{\mathrm{q}}\right)$, $138.8\left(\mathrm{C}_{\mathrm{q}}\right), 132.8\left(\mathrm{C}_{\mathrm{q}}\right), 128.7(2 \mathrm{CH}), 128.1(\mathrm{CH}), 125.3(2 \mathrm{CH}), 105.7$ $\left(\mathrm{C}_{\mathrm{q}}\right), 94.5(\mathrm{CH}), 88.5\left(\mathrm{C}_{\mathrm{q}}\right), 60.6\left(\mathrm{C}_{\mathrm{q}}\right), 29.9\left(3 \mathrm{CH}_{3}\right), 27.2\left(2 \mathrm{CH}_{3}\right)$.
MS: $m / z(\%)=369\left(\mathrm{M}^{+}, 33\right), 311$ (100), 237 (58), 211 (57), 183 (44), 108 (45).
HRMS: m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$: 369.1683; found: 369.1690.

5-(1,3-Di-tert-butyl-1H-pyrazol-5-ylamino)methylene-2,2-di-methyl-1,3-dioxane-5,6-dione (3f)

Treatment of $\mathbf{6 f}$ using the general procedure gave $\mathbf{3 f}$, yield: 0.83 g (89\%); yellow solid; mp $105^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=11.47\left(\mathrm{~d},{ }^{3} \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.35\left(\mathrm{~d},{ }^{3} \mathrm{~J}=13.1 \mathrm{~Hz}, 1\right.$ H), $6.08(\mathrm{~s}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 6 \mathrm{H}), 1.67(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=165.9\left(\mathrm{C}_{\mathrm{q}}\right), 163.1\left(\mathrm{C}_{\mathrm{q}}\right), 158.9\left(\mathrm{C}_{\mathrm{q}}\right), 154.6(\mathrm{CH})$, $137.0\left(\mathrm{C}_{\mathrm{q}}\right), 105.5\left(\mathrm{C}_{\mathrm{q}}\right), 94.0(\mathrm{CH}), 87.8\left(\mathrm{C}_{\mathrm{q}}\right), 59.8\left(\mathrm{C}_{\mathrm{q}}\right), 32.3\left(\mathrm{C}_{\mathrm{q}}\right), 30.3(3$ $\left.\mathrm{CH}_{3}\right), 29.9\left(3 \mathrm{CH}_{3}\right), 27.1\left(2 \mathrm{CH}_{3}\right)$.
MS: $m / z(\%)=349\left(\mathrm{M}^{+}, 24\right), 291(100), 217(27), 202(45), 176$ (56).
HRMS: m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$: 349.1996; found: 349.2000.

FVP Reactions

Flash vacuum pyrolysis reactions were carried out by distillation of the substrate in vacuo through an electrically heated silica furnace tube ($35 \times 2.5 \mathrm{~cm}$). Products were trapped in a U-tube situated at the exit point of the furnace and cooled with liquid N_{2}. Conditions were first established on a small scale (20 mg) where the product(s) were dissolved in a deuterated solvent and analyzed directly by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Larger-scale pyrolyses, involving 0.1 g or more of substrate, were usually removed from the trap by solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL). The precursors and pyrolysis conditions [quantity of precursor, inlet temperature $\left(T_{\mathrm{i}}\right)$, furnace temperature $\left(T_{\mathrm{f}}\right)$, pressure range (P), and pyrolysis time $(t)]$ and yields are stated.

FVP of 1-tert-Butylpyrazole (7)

This compound was too volatile for normal inlet conditions. It was therefore cooled in an acetone-dry ice bath, which was slowly removed to allow sublimation ($20 \mathrm{mg}, T_{\mathrm{i}}$ acetone/dry ice bath, $T_{\mathrm{f}} 600-$ $850{ }^{\circ} \mathrm{C}, P 0.03$ Torr, $t 15 \mathrm{~min}$).

1-Methyl-1,7-dihydropyrazolo[3,4-b]pyridin-4-one (1aa)

FVP of 3a (recrystallized from $\mathrm{MeOH}, 203 \mathrm{mg}, 0.81 \mathrm{mmol}, T_{\mathrm{i}} 199{ }^{\circ} \mathrm{C}, T_{\mathrm{f}}$ $\left.600^{\circ} \mathrm{C}, P 0.03 \mathrm{Torr}, t 30 \mathrm{~min}\right)$ gave 1aa; yield: $111 \mathrm{mg}(92 \%)$; off-white solid; mp $164{ }^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.{ }^{13} \mathrm{mp} 165-168{ }^{\circ} \mathrm{C}\right)$.
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta=8.37$ (d, ${ }^{3} \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.30 (s, 1 H), 6.65 (br $\mathrm{s}, 1 \mathrm{H}), 4.22(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (DMSO-d d_{6}): $\delta=162.4\left(\mathrm{br} \mathrm{C} \mathrm{q}_{\mathrm{q}}\right), 150.7\left(\mathrm{br} \mathrm{C} \mathrm{C}_{\mathrm{q}}\right), 148.1(\mathrm{br} \mathrm{CH})$, $130.6(\mathrm{CH}), 107.9\left(\mathrm{br} \mathrm{C}_{\mathrm{q}}\right), 104.4(\mathrm{CH}), 33.9\left(\mathrm{CH}_{3}\right)$.
MS: $m / z(\%)=149\left(\mathrm{M}^{+}, 100\right), 95(12), 78$ (14), 63 (13).
HRMS: m / z calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 149.0584; found: 149.0584 .

3-Methyl-1,7-dihydro-1-phenylpyrazolo[3,4-b]pyridin-4-one (1ba)

FVP of $\mathbf{3 b}$ (recrystallized from $\mathrm{MeOH}, 195 \mathrm{mg}, 0.60 \mathrm{mmol}, T_{\mathrm{i}} 170{ }^{\circ} \mathrm{C}, T_{\mathrm{f}}$ $600{ }^{\circ} \mathrm{C}, P 0.03 \mathrm{Torr}, t 45 \mathrm{~min}$) gave 1ba; yield: 0.129 mg (95%); offwhite solid; mp $195{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta=11.76$ (s, 1 H), 8.31 (br m, 3 H), 7.57 (app t, $\left.{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.32\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta=160.6\left(\mathrm{C}_{\mathrm{q}}\right), 153.1\left(\mathrm{C}_{\mathrm{q}}\right), 150.9(\mathrm{CH}), 142.0\left(\mathrm{C}_{\mathrm{q}}\right)$, $139.5\left(\mathrm{C}_{\mathrm{q}}\right), 128.9(2 \mathrm{CH}), 124.9(\mathrm{CH}), 119.7(2 \mathrm{CH}), 107.4\left(\mathrm{C}_{\mathrm{q}}\right), 103.2$ (CH), $14.3\left(\mathrm{CH}_{3}\right)$.
MS: $m / z(\%)=226\left(\mathrm{M}^{+}, 30\right), 225(100), 79$ (15), 78 (39).
HRMS: m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 225.0897; found: 225.0896 .

1-tert-Butyl-1,7-dihydropyrazolo[3,4-b]pyridin-4-one (1ca)
FVP of 3c (recrystallized from cyclohexane, $300 \mathrm{mg}, 1.02 \mathrm{mmol}, T_{\mathrm{i}}$ $210{ }^{\circ} \mathrm{C}, T_{\mathrm{f}} 500^{\circ} \mathrm{C}, P 0.03$ Torr, $t 0.5 \mathrm{~h}$) gave 1ca; yield: 185 mg (95\%); yellow solid; $\mathrm{mp} 189-191^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta=11.40(\mathrm{~s}, 1 \mathrm{H}), 8.12$ (br s, 1 H$), 8.02(\mathrm{~s}, 1 \mathrm{H})$, 6.49 (br s, 1 H), 1.74 ($\mathrm{s}, 9 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta=159.3\left(\mathrm{C}_{\mathrm{q}}\right), 152.9$ $\left(\mathrm{C}_{\mathrm{q}}\right), 149.7(\mathrm{CH}), 128.5(\mathrm{CH}), 108.9\left(\mathrm{C}_{\mathrm{q}}\right), 102.2(\mathrm{CH}), 59.6\left(\mathrm{C}_{\mathrm{q}}\right), 29.2(3$ CH_{3}).
MS: $m / z(\%)=191\left(\mathrm{M}^{+}, 24\right), 135(56)$.
HRMS: m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 191.1064; found: 191.1060.

1,7-Dihydropyrazolo[3,4-b]pyridin-4-one (1cb)

FVP of 3c (recrystallized from cyclohexane, $50 \mathrm{mg}, 0.17 \mathrm{mmol}, T_{\mathrm{i}}$ $210^{\circ} \mathrm{C}, T_{\mathrm{f}} 750^{\circ} \mathrm{C}, P 0.03$ Torr, $t 0.5 \mathrm{~h}$) was followed by distillation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ into the U-tube trap. The solvent was removed in vacuo to afford a yellow solid, which was triturated with $\mathrm{Et}_{2} \mathrm{O}$ and filtered under vacuum. The filtrate was further washed with $\mathrm{Et}_{2} \mathrm{O}$ to yield $\mathbf{1 c b}$; yield: 24 mg (67\%); pale brown solid; $\mathrm{mp} 327-330^{\circ} \mathrm{C}$ (Lit. ${ }^{2 \mathrm{~d}} \mathrm{mp} 328-$ $\left.330^{\circ} \mathrm{C}\right)$.
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): δ (major tautomer) $=13.54(\mathrm{~s}, 1 \mathrm{H}), 11.71(\mathrm{~s}, 1$ H), 8.28 (br s, 1 H), 7.62 (br s, 1 H), 5.66 (br s, 1 H).
${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): δ (major tautomer) $=177.1\left(\mathrm{C}_{\mathrm{q}}\right), 151.2\left(\mathrm{C}_{\mathrm{q}}\right)$, $139.2(\mathrm{CH}), 125.8(\mathrm{CH}), 113.4\left(\mathrm{C}_{\mathrm{q}}\right), 107.3(\mathrm{CH})$.
MS: $m / z(\%)=135\left(\mathrm{M}^{+}, 100\right)$.

1-tert-Butyl-1,7-dihydro-3-methylpyrazolo[3,4-b]pyridin-4-one

 (1da)FVP of 3d (125 mg, $0.41 \mathrm{mmol}, T_{\mathrm{i}} 160^{\circ} \mathrm{C}, T_{\mathrm{f}} 500^{\circ} \mathrm{C}, P 0.03$ Torr, $t 1 \mathrm{~h}$) gave 1da; yield: 0.70 g (83\%); off-white solid; $\mathrm{mp} 158{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta=11.17$ (br s, 1 H), 8.01 (d, ${ }^{3} \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.34 (d, $\left.{ }^{3} \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta=160.7\left(\mathrm{br} \mathrm{C}_{\mathrm{q}}\right), 152.2\left(\mathrm{br} \mathrm{C}_{\mathrm{q}}\right), 147.5(\mathrm{CH}), 137.4$ (br Cq), $107.2\left(\operatorname{br~C}_{q}\right), 101.5(\mathrm{CH}), 58.5\left(\mathrm{C}_{\mathrm{q}}\right), 28.8\left(3 \mathrm{CH}_{3}\right), 14.3\left(\mathrm{CH}_{3}\right)$.
MS: $m / z(\%)=205\left(\mathrm{M}^{+}, 48\right), 150,(22), 149$ (100), 148 (26).
HRMS: m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 205.1210; found: 205.1210 .

3-Methyl-1,7-dihydropyrazolo[3,4-b]pyridin-3-one (1db)

FVP of 3d (100 mg, $0.33 \mathrm{mmol}, T_{\mathrm{i}} 160^{\circ} \mathrm{C}, T_{\mathrm{f}} 850^{\circ} \mathrm{C}, P 0.03$ Torr, $t 45$ $\min)$ gave 1db; yield: $0.40 \mathrm{~g}(82 \%)$; off-white solid; mp $254^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): δ (major tautomer) $=13.11(\mathrm{~s}, 1 \mathrm{H}), 11.51(\mathrm{~s}, 1$ H), $7.50\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.55\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.53(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 600 \mathrm{MHz}$): δ (major tautomer) $=178.1\left(\mathrm{br} \mathrm{C}_{\mathrm{q}}\right)$, $151.5\left(\mathrm{br} \mathrm{C}_{\mathrm{q}}\right), 141.5\left(\mathrm{br} \mathrm{C}_{\mathrm{q}}\right), 138.6(\mathrm{CH}), 110.2\left(\mathrm{C}_{\mathrm{q}}\right), 107.1(\mathrm{CH}), 11.0$ $\left(\mathrm{CH}_{3}\right)$.
MS: $m / z(\%)=149\left(\mathrm{M}^{+}, 80\right), 78(100)$.
HRMS: m / z calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 149.0584; found: 149.0583.

1-tert-Butyl-1,7-dihydro-3-phenylpyrazolo[3,4-b]pyridin-4-one

 (1ea)FVP of $3 \mathbf{e}\left(500 \mathrm{mg}, 1.36 \mathrm{mmol}, T_{\mathrm{i}} 220^{\circ} \mathrm{C}, T_{\mathrm{f}} 500^{\circ} \mathrm{C}, P 0.03 \mathrm{Torr}, t 0.5 \mathrm{~h}\right)$ gave 1ea; yield: 358 mg (96%); yellow solid; mp 295-298 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=11.51(\mathrm{~s}, 1 \mathrm{H}), 8.23\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.00(\mathrm{~d}$, $\left.{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.45\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.36\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.60$ (d, $\left.{ }^{3} J=5.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.80(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=160.0\left(\mathrm{C}_{\mathrm{q}}\right), 154.1\left(\mathrm{C}_{\mathrm{q}}\right), 149.6(\mathrm{CH}), 140.7\left(\mathrm{C}_{\mathrm{q}}\right)$, $134.1\left(\mathrm{C}_{\mathrm{q}}\right), 129.0(2 \mathrm{CH}), 128.4(2 \mathrm{CH}), 128.0(\mathrm{CH}), 105.8\left(\mathrm{C}_{\mathrm{q}}\right), 102.6$ (CH), $59.9\left(\mathrm{C}_{\mathrm{q}}\right), 29.2\left(3 \mathrm{CH}_{3}\right)$.
MS: $m / z(\%)=267\left(\mathrm{M}^{+}, 33\right), 211(100)$.
HRMS: m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 267.1366; found: 267.1367 .

1,7-Dihydro-3-phenylpyrazolo[3,4-b]pyridin-4-one (1eb)

FVP of $3 \mathbf{e}\left(500 \mathrm{mg}, 1.36 \mathrm{mmol}, T_{\mathrm{i}} 220^{\circ} \mathrm{C}, T_{\mathrm{f}} 750^{\circ} \mathrm{C}, P 0.03 \mathrm{Torr}, t 0.5 \mathrm{~h}\right.$) was followed by distillation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ into the U-tube trap. The solution was removed and the insoluble product filtered under vacuum to give 1eb; yield: $275 \mathrm{mg}\left(96 \%\right.$ mix $\left.^{12}\right)$; off-white solid; $\mathrm{mp} 298{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): δ (major tautomer) $=13.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 11.74(\mathrm{br}$ s, 1 H), 8.29 (br s, 1 H), 8.05 (br d, ${ }^{3} \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.63 (m, 2 H), 7.47 (m, 2 H), 5.71 (br s, 1 H).
MS: $m / z(\%)=211\left(\mathrm{M}^{+}, 34\right), 183(100)$.
HRMS: m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 211.0751; found: 211.0751 .

1,3-Di-tert-butyl-1,7-dihydropyrazolo[3,4-b]pyridin-4-one (1fa)

FVP of $\mathbf{3 f}\left(500 \mathrm{mg}, 1.43 \mathrm{mmol}, T_{\mathrm{i}} 200^{\circ} \mathrm{C}, T_{\mathrm{f}} 500^{\circ} \mathrm{C}, P 0.03 \mathrm{Torr}, t 0.5 \mathrm{~h}\right)$ was followed by distillation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ into the U-tube trap. The solution was removed and solvent removed in vacuo to afford $\mathbf{1 f a}$; yield: 345 mg (97\%); yellow solid; $\mathrm{mp} 264-266^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=11.39(\mathrm{~s}, 1 \mathrm{H}), 8.13\left(\mathrm{~d},{ }^{3} \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.50(\mathrm{~d}$, $\left.{ }^{3} J=4.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.71(\mathrm{~s}, 9 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=159.3\left(\mathrm{C}_{\mathrm{q}}\right), 154.4\left(\mathrm{C}_{\mathrm{q}}\right), 148.9(\mathrm{CH}), 139.4\left(\mathrm{C}_{\mathrm{q}}\right)$, $105.7\left(\mathrm{C}_{\mathrm{q}}\right), 101.9(\mathrm{CH}), 59.0\left(\mathrm{C}_{\mathrm{q}}\right), 33.7\left(\mathrm{C}_{\mathrm{q}}\right), 29.1\left(3 \mathrm{CH}_{3}\right), 26.1\left(3 \mathrm{CH}_{3}\right)$.
MS: $m / z(\%)=247\left(\mathrm{M}^{+}, 29\right), 232(54), 232(100)$.
HRMS: m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 247.1685; found: 247.1690.

3-tert-Butyl-1,7-dihydropyrazolo[3,4-b]pyridin-4-one (1fb)

FVP of $\mathbf{3 f}\left(500 \mathrm{mg}, 1.43 \mathrm{mmol}, T_{\mathrm{i}} 200^{\circ} \mathrm{C}, T_{\mathrm{f}} 750^{\circ} \mathrm{C}, P 0.03 \mathrm{Torr}, t 0.5 \mathrm{~h}\right)$ was followed by distillation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ into the U-tube trap. The solution was removed and the insoluble product $\mathbf{1 f b}$ was filtered under vacuum; yield: $374 \mathrm{mg}\left(95 \%\right.$ mix $\left.{ }^{12}\right)$; off-white solid; mp $265-266{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): δ (major tautomer) = 12.88 (br s, 1 H), 11.56 (br s, 1 H), 7.59 (br s, 1 H), 5.63 (br s, 1 H$), 1.44(\mathrm{~s}, 9 \mathrm{H})$.
MS: $m / z(\%)=191\left(\mathrm{M}^{+}, 28\right), 176(100), 149(27)$.
HRMS: m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 191.1059; found: 191.1063.

1-tert-Butyl-4-chloro-3-phenyl-1H-pyrazolo[3,4-b]pyridine (9)

Compound 1ea ($1.00 \mathrm{~g}, 3.74 \mathrm{mmol}$) was dissolved in $\mathrm{POCl}_{3}(18 \mathrm{~mL}$, 197 mmol) and heated to reflux for 4 h . The solution was cooled, and the volume reduced in vacuo. $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ was added slowly to the dark residue followed by sat. aq $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$, the combined organic layers were washed with brine (30 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent removed in vacuo to afford 9; yield: 1.06 g (99\%); brown solid; mp 123$125^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=8.41\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.77(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~m}, 3$ H), $7.14\left(\mathrm{~d},{ }^{3} J=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.91(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=151.9\left(\mathrm{C}_{\mathrm{q}}\right), 147.3(\mathrm{CH}), 141.6\left(\mathrm{C}_{\mathrm{q}}\right), 137.7\left(\mathrm{C}_{\mathrm{q}}\right)$, $133.1\left(\mathrm{C}_{\mathrm{q}}\right), 130.5(2 \mathrm{CH}), 128.2(\mathrm{CH}), 127.9(2 \mathrm{CH}), 117.2(\mathrm{CH}), 113.5$ $\left(\mathrm{C}_{\mathrm{q}}\right), 60.7\left(\mathrm{C}_{\mathrm{q}}\right), 29.2\left(3 \mathrm{CH}_{3}\right)$.
MS: $m / z(\%)=287\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 10\right], 285\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 31\right], 231$ (32), 229 (100).

HRMS: m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{16}{ }^{35} \mathrm{ClN}_{3}\left(\mathrm{M}^{+}\right)$: 285.1038; found: 285.1039.

4-Chloro-3-phenyl-1H-pyrazolo[3,4-b]pyridine (10)

FVP of 9 ($50 \mathrm{mg}, 0.18 \mathrm{mmol}, T_{\mathrm{i}} 300^{\circ} \mathrm{C}, T_{\mathrm{f}} 750^{\circ} \mathrm{C}, P 0.033$ Torr, $t 0.5 \mathrm{~h}$) was followed by distillation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ into the U-tube trap. The solvent was removed in vacuo to afford $\mathbf{1 0}$; yield: 35 mg (87%); pale brown solid; mp $274-277^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ (major tautomer) $=12.85(\mathrm{~s}, 1 \mathrm{H}), 8.57\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.81 ($\mathrm{d},{ }^{3} \mathrm{~J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.52 (m, 3 H), 7.26 ($\mathrm{d},{ }^{3} \mathrm{~J}=5.2 \mathrm{~Hz}, 1$ H).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: δ (major tautomer) $=153.7\left(\mathrm{C}_{\mathrm{q}}\right), 149.1(\mathrm{CH}), 145.8$ $\left(\mathrm{C}_{\mathrm{q}}\right), 139.2\left(\mathrm{C}_{\mathrm{q}}\right), 132.4\left(\mathrm{C}_{\mathrm{q}}\right), 130.3(2 \mathrm{CH}), 128.7(\mathrm{CH}), 128.1(2 \mathrm{CH})$, 118.3 (CH), $112.4\left(\mathrm{C}_{\mathrm{q}}\right)$.

MS: $m / z(\%)=231\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 30\right], 229\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 100\right], 166$ (50).
HRMS: m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{8}{ }^{35} \mathrm{ClN}_{3}\left(\mathrm{M}^{+}\right)$: 229.0412; found: 229.0414.

1-tert-Butyl-3-phenyl-4-(pyrrolidin-1-yl)-1H-pyrazolo[3,4-b]pyridine (11)

Pyrrolidine ($1.0 \mathrm{~mL}, 11 \mathrm{mmol}$) was added to a solution of 9 (250 mg , 0.877 mmol) in 1,2-dimethoxyethane (15 mL) and the mixture was heated at reflux with stirring for 18 h . The solvent was removed and the residue was partitioned between sat. aq $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ and EtOAc (25 mL). The organic layer was separated and the solvent removed in vacuo to yield an orange residue, which was purified by dry flash chromatography eluting with hexane-EtOAc (20:1). Product containing fractions were combined and solvent removed in vacuo to give 11 as a yellow gum, which crystallized on standing; yield: 87 mg (37\%); mp 122-123 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=8.18\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.66\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $7.42\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.35\left(\mathrm{t},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.5 \mathrm{~Hz}, 1\right.$ H), 3.06 (t, ${ }^{3} J=6.5 \mathrm{~Hz}, 4 \mathrm{H}$), 1.89 ($\mathrm{s}, 9 \mathrm{H}$), $1.73\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 4 \mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=153.3\left(\mathrm{C}_{\mathrm{q}}\right), 151.5\left(\mathrm{C}_{\mathrm{q}}\right), 147.4(\mathrm{CH}), 141.8\left(\mathrm{C}_{\mathrm{q}}\right)$, $136.7\left(\mathrm{C}_{\mathrm{q}}\right), 129.2(2 \mathrm{CH}), 128.4(2 \mathrm{CH}), 127.6(\mathrm{CH}), 106.0\left(\mathrm{C}_{\mathrm{q}}\right), 99.6$ $(\mathrm{CH}), 59.7\left(\mathrm{C}_{\mathrm{q}}\right), 51.5\left(2 \mathrm{CH}_{2}\right), 29.1\left(3 \mathrm{CH}_{3}\right), 25.2\left(2 \mathrm{CH}_{2}\right)$.
MS: $m / z(\%)=320\left(\mathrm{M}^{+}, 54\right), 264(100), 263\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}, 38\right)$.
HRMS: m / z calc for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{4}\left(\mathrm{M}^{+}\right)$: 320.2007 ; found: 320.2005.

4-Anilino-1-tert-butyl-3-phenyl-1H-pyrazolo[3,4-b]pyridine (12)

A solution of 9 ($285 \mathrm{mg}, 1.00 \mathrm{mmol}$), aniline ($0.1 \mathrm{~mL}, 1.1 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(18 \mathrm{mg}, 0.02 \mathrm{mmol})$, dppp ($16 \mathrm{mg}, 0.04 \mathrm{mmol}$), and $t-$ BuONa ($134 \mathrm{mg}, 1.4 \mathrm{mmol}$) in toluene (10 mL) contained in an ovendried flask purged with N_{2}, was heated to $70^{\circ} \mathrm{C}$ for 72 h . The mixture was cooled, taken up in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, washed with brine ($3 \times 5 \mathrm{~mL}$), and concentrated in vacuo to give the crude product, which was purified by dry flash chromatography eluting with hexane-EtOAc (20:1). Product containing fractions were combined and solvent removed in vacuo to afford $\mathbf{1 2}$ as a yellow gum, which crystallized on standing; yield: $280 \mathrm{mg}(87 \%) ; \mathrm{mp} 116-118^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=8.23\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.68\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 7.77 (t, $\left.{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.55\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.38\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.4,7.4\right.$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.17 (m, 3 H), 6.72 (d, ${ }^{3} \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.62 (br s, 1 H), 1.91 (s, 9 H).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=152.8\left(\mathrm{C}_{\mathrm{q}}\right), 148.8(\mathrm{CH}), 145.9\left(\mathrm{C}_{\mathrm{q}}\right), 140.5\left(\mathrm{C}_{\mathrm{q}}\right)$, $139.2\left(\mathrm{C}_{\mathrm{q}}\right), 134.9\left(\mathrm{C}_{\mathrm{q}}\right), 129.5(2 \mathrm{CH}), 129.3(2 \mathrm{CH}), 129.1(2 \mathrm{CH}), 128.6$ (CH), 124.5 (CH), 122.3 (2 CH), 104.5 (C C_{q}, 97.7 (CH), $60.0\left(\mathrm{C}_{\mathrm{q}}\right), 29.2$ (3 CH_{3}).
MS: $m / z(\%)=342\left(\mathrm{M}^{+}, 42\right), 286(100)$.
HRMS: m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{4}\left(\mathrm{M}^{+}\right)$: 342.1850; found: 342.1852.

4-Anilino-3-phenyl-1H-pyrazolo[3,4-b]pyridine (13)

FVP of $12\left(30 \mathrm{mg}, 0.88 \mathrm{mmol}, T_{\mathrm{i}} 235^{\circ} \mathrm{C}, T_{\mathrm{f}} 750^{\circ} \mathrm{C}, ~ P 0.03\right.$ Torr, $\left.t 0.5 \mathrm{~h}\right)$ was followed by distillation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ into the U-tube trap. The solvent was removed in vacuo to afford 13; yield: 18 mg (72\%); pale yellow solid; mp 216-217 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ (major tautomer) $=12.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.33\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.81\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.58\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.52(\mathrm{t}$, $\left.{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.41\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.23(\mathrm{~m}, 3 \mathrm{H}), 6.76\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ (major tautomer) $=154.7\left(\mathrm{C}_{\mathrm{q}}\right), 150.3\left(\mathrm{C}_{\mathrm{q}}\right), 146.8$ (CH), 144.5 (C_{q}) 138.7 (C_{q}), $134.4\left(\mathrm{C}_{\mathrm{q}}\right), 129.6$ (2 CH), 129.3 (2 CH), 129.0 (2 CH), 128.9 (CH), 125.1 (CH), 122.8 (2 CH), $102.8\left(\mathrm{C}_{\mathrm{q}}\right), 98.3$ (CH).
MS: $m / z(\%)=286\left(\mathrm{M}^{+}, 100\right), 285(58), 258(58)$.
HRMS: m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4}\left(\mathrm{M}^{+}\right)$: 286.1224; found: 286.1218.

Acknowledgment

We thank Cancer Research UK (studentships to AN and MM; Grant Ref C21383/A6950) for financial support and Lorna Murray for assistance with NMR data.

References

(1) Deceased.
(2) (a) Donati, D.; Ferrini, S.; Fusi, S.; Ponticelli, F. Synthesis 2003, 2518. (b) Hickey, D. M. B.; Ife, R. J.; Leach, C. A.; Liddle, J.; Pinto, I. L.; Smith, S. A.; Stanway, S. J. Patent PCT Int. Appl. WO 2002030904, 2002; Chem. Abstr. 2002, 136, 325424 (c) Kania, R. S.; Bender, S. L.; Borchardt, A. J.; Braganza, J. F.; Cripps, S. J.; Hua, Y.; Johnson, M. D.; Johnson, T. O. J..; Luu, H. T.; Palmer, C. L.; Reich, S. H.; Tempczyk-Russell, A. M.; Teng, M.; Thomas, C.; Varney, M. D.; Wallace, M. B. Patent PCT Int. Appl. WO 2001002369, 2001; Chem. Abstr. 2001, 134, 100864 (d) Dorn, H.; Ozegowski, R. J. Prakt. Chem. 1982, 324, 557. (e) Reimlinger, H.; Peiren, M. A.; Merenyi, R. Chem. Ber. 1970, 103, 3252. (f) Dorn, H.; Zubek, A. Chem. Ber. 1968, 101, 3265. (g) Checchi, S.; Papini, P.; Ridi, M. Gazz. Chim. Ital. 1956, 86, 631.
(3) CDK2 inhibitors: (a) Misra, R. N.; Rawlins, D. B.; Xiao, H. Y.; Shan, W.; Bursuker, I.; Keller, K. A.; Mulheron, J. G.; Sack, J. S.; Tokarski, J. S.; Kimball, S. D.; Webster, K. R. Bioorg. Med. Chem. Lett. 2003, 13, 1133. (b) Misra, R. N.; Xiao, H.; Rawlins, D. B.; Shan, W.; Keller, K. A.; Mulheron, J. G.; Sack, J. S.; Tokarski, L. S.; Kimball, S. D.; Webster, K. R. Bioorg. Med. Chem. Lett. 2003, 13, 2405. A_{1} adenosine antagonists: (c) Tuccinardi, T.; Schenone, S.; Bondavalli, F.; Brullo, C.; Bruno, O.; Mosti, L.; Zizzari, A. T.; Tintori, C.; Manetti, F.; Ciampi, O.; Trincavelli, M. L.; Martini, C.; Martinelli, A.; Botta, M. ChemMedChem 2008, 3, 898. CDK1 and CDK4 inhibitors: (d) Sielecki, T. M.; Boylan, J. F.; Benfield, P. A.; Trainor, G. L. J. Med. Chem. 2000, 43, 1. GSK3 inhibitors: (e) Witherington, J.; Bordas, V.; Gaiba, A.; Naylor, A.; Rawlings, A. D.; Slingsby, B. P.; Smith, D. G.; Takle, A. K.; Ward, R. W. Bioorg. Med. Chem. Lett. 2003, 13, 3059. CHK1 inhibitors: (f) Matthews, T. P.; Klair, S.; Burns, S.; Boxall, K.; Cherry, M.; Fisher, M.; Westwood, I. M.; Walton, M. I.; McHardy, T.; Cheung, K. M.; Van Montfort, R.; Williams, D.; Aherne, G. W.; Garrett, M. D.; Reader, J.; Collins, I. J. Med. Chem. 2009, 52, 4810.
(4) Fischmann, T. O.; Hurza, A.; Duca, J. S.; Ramanathan, L.; Mayhood, T.; Windsor, W. T.; Le, H. V.; Guzi, T. J.; Dwyer, M. P.; Paruch, K.; Doll, R. J.; Lees, E.; Parry, D.; Seghezzi, W.; Madison, V. Biopolymers 2007, 89, 372.
(5) Clarke, D.; Mares, R. W.; McNab, H. J. Chem. Soc., Perkin Trans. 1 1997, 1799.
(6) Review:Gaber, A. M.; McNab, H. Synthesis 2001, 2059.

Synthesis	M. Mackay et al.	THIEME OPEN ACCESS

Paper

(7) Iwasawa, Y.; Kato, T.; Kawanishi, N.; Masutani, K.; Kouta, M.; Mita, T.; Nonoshita, K.; Ohkubo, M. Patent PCT Int. Appl. WO 2008026769, 2008; Chem. Abstr. 2008, 148, 331690
(8) Adapted from:Wager, T. Patent PCT Int. Appl. WO 2005000303, 2005; Chem. Abstr. 2005, 142, 114054
(9) (a) Adapted from:Niculescu-Duvaz, D.; Springer, C. J.; Gill, A. L.; Taylor, R. D.; Marais, R. M.; Dijkstra, H.; Gaulon, C.; Menard, D.; Roman Vela, E. Patent PCT Int. Appl. WO 2006043090, 2006; Chem. Abstr. 2006, 144, 412508 (b) Suijkerbuijk, B. M. J. M.; Niculescu-Duvaz, I.; Gaulon, C.; Dijkstra, H. P.; Niculescu-Duvaz, D.; Menard, D.; Zambon, A.; Nourry, A.; Davies, L.; Manne, H. A.;

Friedlos, F.; Ogilvie, L. M.; Hedley, D.; Lopes, F.; Preece, N. P. U.; Moreno-Farre, J.; Raynaud, F. I.; Kirk, R.; Whittaker, S.; Marais, R.; Springer, C. J. J. Med. Chem. 2010, 53, 2741.
(10) McNab, H.; Stobie, I. J. Chem. Soc., Perkin Trans. 1 1982, 1845.
(11) Pérez, J. D.; Yranzo, G. I.; Phagouapé, L. M. Bull. Soc. Chim. Fr. 1986, 129.
(12) For $\mathbf{1 e b}$ and $\mathbf{1 f b}$, the product was contaminated with unreacted starting material as well as the pyrazolo[1,5-a]pyrimidine isomer, indicating competing N-tert-butyl deprotection prior to ring formation, and hence cyclization via pathway 4 to 5 in Scheme 1 rather than 4 to 1.
(13) Chu, I.; Lynch, B. M. J. Med. Chem. 1975, 18, 161.

