Synlett 2014; 25(16): 2350-2354
DOI: 10.1055/s-0034-1378615
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Tetracyclic Flavonoids via Palladium-Catalyzed Intramolecular Oxidative Cyclization

Narasimham Ayyagari
Department of Pharmaceutical Sciences, School of Pharmacy, Thomas Jefferson University, 901 Walnut St, Ste. 919, Philadelphia, PA 19107, USA   Fax: +1(215)5037722   Email: jitendra.belani@jefferson.edu
,
Jitendra D. Belani*
Department of Pharmaceutical Sciences, School of Pharmacy, Thomas Jefferson University, 901 Walnut St, Ste. 919, Philadelphia, PA 19107, USA   Fax: +1(215)5037722   Email: jitendra.belani@jefferson.edu
› Author Affiliations
Further Information

Publication History

Received: 16 May 2014

Accepted after revision: 16 July 2014

Publication Date:
18 August 2014 (online)


Dedicated to Professors Charles J. Kelley and Scott D. Rychnovsky

Abstract

Palladium-catalyzed oxidative cyclization of terminal-olefin-tethered phenols was achieved in good yields (61–90% yields). The reaction was optimized and White catalyst {[1,2-bis-(phenylsulfinyl)ethane]palladium(II)acetate} provided the best yield in the presence of benzoquinone as an oxidant. The reaction tolerated both electron-donating and electron-withdrawing substituents on the substrates, and the structure of the tetracyclic flavonoids was confirmed using single-crystal X-ray analysis. The study represents the first example of successful allylic C–H activation/ C–O bond formation using terminal-olefin-tethered phenols.

Supporting Information

 
  • References and Notes

    • 1a Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 1b Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 1c Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 1d Ritleng V, Sirlin C, Pfeffer M. Chem. Rev. 2002; 102: 1731
    • 2a Liron F, Oble J, Lorion MM, Poli G. Eur. J. Org. Chem. 2014; in press; DOI: 10.1002/ejoc.201402049
    • 2b Li H, Li B.-J, Shi Z.-J. Catal. Sci. Technol. 2011; 1: 191
    • 2c McDonald RI, Liu G, Stahl SS. Chem. Rev. 2011; 111: 2981
    • 2d Liu G, Wu YC. Top. Curr. Chem. 2010; 292: 195
    • 2e Jensen T, Fristrup P. Chem. Eur. J. 2009; 15: 9632
    • 2f Collet F, Dodd RH, Dauban P. Chem. Commun. 2009; 5061
    • 3a Sharma A, Hartwig JF. J. Am. Chem. Soc. 2013; 135: 17983
    • 3b Le C, Kunchitapatham K, Henderson WH, Check CT, Stambuli JP. Chem. Eur. J. 2013; 19: 11153
    • 3c Takenaka K, Akita M, Tanigaki S, Takizawa S, Sasai H. Org. Lett. 2011; 13: 3506
    • 3d Pilarski LT, Janson PG, Szabό KJ. J. Org. Chem. 2011; 76: 1503
    • 3e Chen H, Jiang H, Cai C, Dong J, Fu W. Org. Lett. 2011; 13: 992
    • 3f Gormisky PE, White MC. J. Am. Chem. Soc. 2011; 133: 12584
    • 3g Mann SE, Aliev AE, Tizzard GJ, Sheppard TD. Organometallics 2011; 30: 1772
    • 3h Campbell AN, White PB, Guzei LA, Stahl SS. J. Am. Chem. Soc. 2010; 132: 15116
    • 3i Henderson WH, Check CT, Proust N, Stambuli JP. Org. Lett. 2010; 12: 824
    • 3j Thiery E, Aouf C, Harakat D, Bras JL, Muzart J. J. Org. Chem. 2010; 75: 1771
    • 3k Vermeulen NA, Delcamp JH, White MC. J. Am. Chem. Soc. 2010; 132: 11323
    • 3l Pilarski LT, Selander N, Bӧse D, Szabό KJ. Org. Lett. 2009; 11: 5518
    • 3m Stang EM, White MC. Nat. Chem. 2009; 1: 547
    • 3n Lin B.-L, Labinger JA, Bercaw JE. Can. J. Chem. 2009; 87: 264
    • 3o Delcamp JH, White MC. J. Am. Chem. Soc. 2006; 128: 15076
    • 3p Fraunhoffer KJ, Prabagaran N, Sirois LE, White MC. J. Am. Chem. Soc. 2006; 128: 9032
    • 3q Chen MS, Prabagaran N, Labenz NA, White MC. J. Am. Chem. Soc. 2005; 127: 6970
    • 3r Chen MS, White MC. J. Am. Chem. Soc. 2004; 126: 1346
    • 4a Xing D, Yang D. Org. Lett. 2013; 15: 4370
    • 4b Jiang C, Covell DJ, Stepan AF, Plummer MS, White MC. Org. Lett. 2012; 14: 1386
    • 4c Yin G, Wu Y, Liu G. J. Am. Chem. Soc. 2010; 132: 11978
    • 4d Shimizu Y, Obora Y, Ishii Y. Org. Lett. 2010; 12: 1372
    • 4e Nahra F, Liron F, Prestat G, Mealli C, Messaoudi A, Poli G. Chem. Eur. J. 2009; 15: 11078
    • 4f Rice GT, White MC. J. Am. Chem. Soc. 2009; 131: 11707
    • 4g Wu L, Qiu S, Liu G. Org. Lett. 2009; 11: 2707
    • 4h Reed S, White MC. J. Am. Chem. Soc. 2008; 130: 3316
    • 4i Liu G, Yin G, Wu L. Angew. Chem. Int. Ed. 2008; 47: 4733
    • 4j Fraunhoffer KJ, White MC. J. Am. Chem. Soc. 2007; 129: 7274
    • 5a Wang G.-W, Zhou A.-X, Li S.-X, Yang S.-D. Org. Lett. 2014; 16: 3118
    • 5b Howell JM, Liu W, Young AJ, White MC. J. Am. Chem. Soc. 2014; 136: 5750
    • 5c Li L, Chen Q.-Y, Guo Y. Chem. Commun. 2013; 49: 8764
    • 5d Trost BM, Thaisrivongs DA, Donckele EJ. Angew. Chem. Int. Ed. 2013; 52: 1523
    • 5e Young AJ, White MC. Angew. Chem. Int. Ed. 2011; 50: 6824
    • 5f Jensen T, Fristrup P. Chem. Eur. J. 2009; 15: 9632
    • 5g Lin S, Song C-X, Cai G.-X, Wang W.-H, Shi Z.-J. J. Am. Chem. Soc. 2008; 130: 12901
    • 5h Young AJ, White MC. J. Am. Chem. Soc. 2008; 130: 14090
    • 5i Lin S, Song C.-X, Cai G.-X, Wang W.-H, Shi Z.-J. J. Am. Chem. Soc. 2008; 130: 12901
    • 6a Jiang H, Chen H, Yang W, Wu W. Org. Biomol. Chem. 2014; 12: 3340
    • 6b Braun M.-G, Doyle AG. J. Am. Chem. Soc. 2013; 135: 12990
    • 6c Larsson JM, Zhao TS. N, Szabό KJ. Org. Lett. 2011; 13: 1888
    • 6d Chen H, Cai C, Liu X, Li X, Jiang H. Chem. Commun. 2011; 47: 12224
    • 7a Worayuthakarn R, Boonyaudtayan S, Ruchirawat S, Thasana N. Eur. J. Org. Chem. 2014; 2496
    • 7b Pelly SC, Govender S, Fernandes MA, Schmalz H.-G, De Koning CB. J. Org. Chem. 2007; 72: 2857
    • 8a Trend RM, Ramtohul YK, Stoltz BM. J. Am. Chem. Soc. 2005; 127: 17778
    • 8b Muniz K. Adv. Synth. Catal. 2004; 346: 1425
    • 8c Trend RM, Ramtohul YK, Ferreira EM, Stoltz BM. Angew. Chem. Int. Ed. 2003; 42: 2892
    • 8d Uozumi Y, Kato K, Hayashi T. J. Am. Chem. Soc. 1997; 119: 5063
    • 8e Zhang YJ, Wang F, Zhang W. J. Org. Chem. 2007; 72: 9208
    • 9a Lin C.-N, Shieh W.-L. Phytochemistry 1992; 31: 2922
    • 9b Lin C.-N, Shieh W.-L, Ko F.-K, Teng C.-M. Biochem. Pharm. 1993; 45: 509
    • 9c Liou S.-S, Shieh W.-L, Cheng T.-H, Won S.-J, Lin C.-N. J. Pharm. Pharmacol. 1993; 45: 791
    • 9d Chen C.-C, Huang Y.-L, Ou J.-C. J. Nat. Prod. 1993; 56: 1594
    • 9e Lu C.-M, Lin C.-N. Phytochemistry 1994; 35: 781
    • 9f Musthapa I, Juliawaty LD, Syah YM, Hakim EH, Latip J, Ghisalberti EL. Arch. Pharm. Res. 2009; 32: 191
  • 10 Kim Y, Moon Y, Kang D, Hong S. Org. Biomol. Chem. 2014; 12: 3413
    • 11a Blasko G, Xun L, Cordell GA. J. Nat. Prod. 1988; 51: 60
    • 11b Kahnberg P, Lager E, Rosenberg C, Schougaard J, Camet L, Sterner O, Nielsen EO, Nielsen M, Liljefors T. J. Med. Chem. 2002; 45: 4188
  • 12 Zhang W.-J, Wu J.-F, Zhou P.-F, Wang Y, Hou A.-J. Tetrahedron 2013; 69: 5850
  • 13 General Procedure for Compound 7f A dry two-neck round-bottom flask was charged with White catalyst (0.027 g, 0.053 mmol, 0.2 equiv) and benzoquinone (0.059 g, 0.55 mmol, 2 equiv). Compound 6f (0.09 g, 0.27 mmol, 1 equiv) and AcOH (0.018 g, 0.29 mmol, 1.1 equiv) in CH2Cl2 (5 mL) was added dropwise to the above mixture and refluxed for 5 h. To the reaction mixture, sat. NH4Cl was added, and the mixture was extracted with CH2Cl2. The organic phase was washed with brine, dried over Na2SO4, and evaporated. The crude product was purified by silica gel column chromatography by eluting with EtOAc–hexanes (5%) to afford 7f (79 mg, 87%). Spectral Data White solid; yield 79 mg (87%); mp 171–172 °C. IR (KBr): 3020 (w), 1635 (s), 1612 (s), 1216 (s), 832 (m), 772 (s) cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.51 (s, 3 H), 5.16 (dt, J = 10.4, 1.3 Hz, 1 H), 5.34 (dt, J = 17.1, 1.2 Hz, 1 H), 5.99 (ddd, J = 17.1, 10.5, 5.0 Hz, 1 H), 6.15 (dt, J = 5.0, 1.5 Hz, 1 H), 7.01 (dd, J = 8.3, 0.7 Hz, 1 H), 7.07 (td, J = 7.6, 1.0 Hz, 1 H), 7.41 (ddd, J = 8.3, 7.4, 1.7 Hz, 1 H), 7.44 (s, 1 H), 7.78 (dd, J = 7.8, 1.5 Hz, 1 H), 8.16 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 20.8, 72.9, 111.9, 115.6, 117.0, 117.7, 119.9, 121.7, 123.2, 123.7, 125.5, 131.9, 134.0 (2×), 142.9, 153.9, 154.9, 156.1, 173.5. ESI-MS: m/z = 325.1 [M + H]+.
  • 14 CCDC 1017874.