Synlett 2014; 25(15): 2171-2175
DOI: 10.1055/s-0034-1378527
letter
© Georg Thieme Verlag Stuttgart · New York

One-Pot Synthesis of 3,4-Disubstituted 2-Methylcyclopent-2-enols as Useful Building Blocks

Morgan Jouanneau
a   Laboratoire de Chimie des Procédés et Substances Naturelles, ICMMO (CNRS UMR 8182), Université Paris-Sud, Bâtiment 410, 91405 Orsay Cedex, France, Fax: +33(1)69154679   Email: jean-pierre.ferezou@u-psud.fr
,
Aurélien Tap
b   Faculté de Pharmacie (CNRS UMR 8638), Université Paris Descartes, 4 avenue de l’Observatoire, 75270 Paris Cedex 06, France
,
Janick Ardisson
b   Faculté de Pharmacie (CNRS UMR 8638), Université Paris Descartes, 4 avenue de l’Observatoire, 75270 Paris Cedex 06, France
,
Jean-Pierre Férézou*
a   Laboratoire de Chimie des Procédés et Substances Naturelles, ICMMO (CNRS UMR 8182), Université Paris-Sud, Bâtiment 410, 91405 Orsay Cedex, France, Fax: +33(1)69154679   Email: jean-pierre.ferezou@u-psud.fr
› Author Affiliations
Further Information

Publication History

Received: 23 April 2014

Accepted after revision: 21 June 2014

Publication Date:
31 July 2014 (online)


Abstract

The present study refers to the synthesis of cyclopentene subunits possessing three differentiable functional groups. A tri­phenylphosphine triggered one-pot Michael–intramolecular Wittig reaction between di-tert-butyl acetylenedicarboxylate and butanedione was made reproducible and scalable, delivering in good yield the desired tricarbonylated building block. Simple and selective transformations of this functionalized cyclopentene were performed.

Supporting Information

 
  • References and Notes


    • For some general reviews, see:
    • 1a Trost BM. Chem. Soc. Rev. 1982; 141
    • 1b Hudlicky T, Price JD. Chem. Rev. 1989; 89: 1467
    • 1c Gibson SE, Lewis SE, Mainolfi M. J. Organomet. Chem. 2004; 689: 3873
    • 1d Mikolajczyk M, Balczewski P. ‘Phosphonate Chemistry and Reagents in the Synthesis of Biologically Active and Natural Products’ in New Aspects in Phosphorus Chemistry II , Book Series Topics in Current Chemistry. Vol. 223. Majoral JP. Springer-Verlag; Berlin/Heidelberg: 2003: 161
    • 1e Lee H.-W, Kwong F.-Y. Eur. J. Org. Chem. 2010; 789
    • 1f For a review, see: Dinda B, Debnath S, Banik R. Chem. Pharm. Bull. 2011; 59: 803; and references herein
  • 2 Zhang S, Zhao M, Bai L, Hasegawa T, Wang J, Wang L, Xue H, Deng Q, Xing F, Bai Y, Sakai J.-I, Bai J, Koyanagi R, Tsukumo Y, Kataoka T, Nagai K, Hirose K, Ando M. J. Nat. Prod. 2006; 69: 1425
    • 3a Dew DP, Krichau N, Reichwald K, Simonsen HT. Phytochem. Rev. 2009; 8: 581
    • 3b Schall A, Reiser O. Eur. J. Org. Chem. 2008; 14: 2353
    • 4a Søhoel H, Lund-Jensen A.-M, Møller JV, Nissen P, Denmeade SR, Isaacs JT, Olsen CE, Christensen SB. Bioorg. Med. Chem. 2006; 14: 2810 ; and references herein
    • 4b Christensen SB, Skytte DM, Denmeade SR, Dionne C, Møller JV, Nissen P, Isaacs JT. Anticancer Agents Med. Chem. 2009; 9: 276
  • 5 Yang H, Gao Y, Qiao X, Xie L, Xu X. Org. Lett. 2011; 13: 3670
  • 6 Vidyalakshmi KS, Rajamanickam GV. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2009; 48: 1019
    • 7a Cumpstey I. Carbohydr. Res. 2009; 344: 2285
    • 7b For some recent approaches to carbafuranoses from natural pentoses, see: Gallos JK, Dellios CC, Spata EE. Eur. J. Org. Chem. 2001; 79
  • 8 Ko OH, Hong JH. Nucleosides Nucleotides Nucleic Acids 2009; 28: 761
    • 9a Nilsson M, Belfrage AK, Lindström S, Wähling H, Lindquist C, Ayesa S, Kahnberg P, Pelcman M, Benkestock K, Agback T, Vrang L, Terelius Y, Wikström K, Hamelink E, Rydergård C, Edlund M, Eneroth A, Raboisson P, Lin TI, de Kock H, Wigerinck P, Simmen K, Samuelsson B, Rosenquist Å. Bioorg. Med. Chem. Lett. 2010; 20: 4004 ; and references herein
    • 9b Wähling H, Samuelsson B. U.S. Patent US 2010/7700552 B2, 2010
  • 10 Allenic Pauson–Khand strategy for the construction of the [5.3.0] central core of thapsigargin: Tap A, Jouanneau M, Galvani G, Sorin G, Lannou M.-I, Férézou J.-P, Ardisson J. Org. Biomol. Chem. 2012; 10: 8140

    • Selected recent examples for the synthesis of related trisubstituted cyclopentenoids (see also references cited herein):
    • 11a From 2-alkyl-1,3-cyclopentanedione: Schulé A, Liang H, Vors J.-P, Ciufolini MA. J. Org. Chem. 2009; 74: 1587
    • 11b From carvone, via Favorskii rearrangement: Andrews SP, Ball M, Wierschem F, Cleator E, Oliver S, Högenauer K, Simic O, Antonello A, Hünger U, Smith MD, Ley SV. Chem. Eur. J. 2007; 13: 5688
    • 11c From carvone via oxidative cleavage of the double bond followed by aldol reaction: Lai KW, Paquette LA. Org. Lett. 2008; 10: 2115
    • 11d Through interrupted Nazarov cyclization: Marx VM, Burnell DJ. Org. Lett. 2009; 11: 1229
    • 11e Torquoselective Nazarov cyclization: Kerr DJ, Miletic M, Chaplin JH, White JM, Flynn BL. Org. Lett. 2012; 14: 1732
    • 11f Ni-catalyzed enal-alkyne reductive cyclization: Jenkins AD, Herath A, Song M, Montgomery J. J. Am. Chem. Soc. 2011; 133: 14460
    • 11g RCM approach: Frigell J, Eriksson L, Cumpstey I. Carbohydr. Res. 2011; 346: 1277

    • Pauson–Khand cyclization:
    • 11h Hong B.-C, Dange NS, Yen P.-J, Lee G.-H, Liao J.-H. Org. Lett. 2012; 14: 5346

    • Intramolecular pseudo Pauson–Khand cyclization:
    • 11i Barluenga J, Álvarez-Fernández A, Suárez-Sobrino ÁL, Tomás M. Angew. Chem. Int. Ed. 2012; 51: 183
    • 12a Yavari I, Amiri R, Haghdadi M. J. Chem. Res. 2004; 766
    • 12b Mechanistically, this reaction involves an initial conjugate addition of triphenylphosphine onto the acetylenic electrophile 7 to give the intermediate zwitterionic species A which deprotonates butanedione 8 to give its corresponding enolate B as well as the vinyl phosphonium ion C. Further nucleophilic addition of B onto acceptor C yields ylide D prone to deliver the final Wittig annelation adduct 9 (Scheme 6). It is worth noting that when performed on the corresponding diethyl ester of 7, this reaction leads to γ-lactone formation due to the addition of the diethyl ester zwitterion corresponding to A onto one of the butanedione carbonyl groups followed by γ-lactone annelation and subsequent ethanolysis of the phosphonium residue.
  • 13 For recent examples of the search for such solutions, see: Bechara WS, Pelletier G, Charette AB. Nature Chem. 2012; 4: 228 ; and references herein
  • 14 Study to be published elsewhere. Although different experiments were performed to understand the requirement of a large excess of butanedione (syringe pump additions, the presence or the absence of traces of a protic sources such as H2O or t-BuOH), the reason for the need of such an excess still remains unclear.
  • 15 Experimental Procedure for 9: To a solution of triphenylphosphine (25.5 g, 97.4 mmol, 1.1 equiv) and butanedione (155 mL, 1.77 mol, 20 equiv) in anhyd CH2Cl2 at –5 °C was added dropwise di-tert-butylacetylene dicarboxylate (20 g, 88.5 mmol). The reaction mixture was allowed to warm to r.t. and stirred for 3 h. The solvent and the excess of butanedione were removed under reduced pressure and the residue was purified by flash column chromatography (heptane–EtOAc, 1:0 up to 3:1) to give pure cyclopentenone adduct 9 (16.4 g, 63% yield, see supporting information for full characterization).
  • 16 For the analogous cyclopentenone diester 24 lacking the vinylic Me group α to the carbonyl, reduction with NaBH4 led to a 6:1 mixture of cis/trans-25 diastereoisomers (Scheme 7). see: Thorstensson F, Wångsell F, Kvarnström I, Vrang L, Hamelink E, Hallberg A, Rosenquist Å, Samuelsson B. Bioorg. Med. Chem. 2007; 15: 827
  • 18 Preparation of 16: A suspension of N,O-dimethylhydroxylamine hydrochloride (3.69 g, 38.0 mmol, 1.2 equiv) in anhyd CH2Cl2 at –5 °C was added dropwise to a 2 M solution of AlMe3 in toluene (19.0 mL, 38 mmol, 1.2 equiv) and the reaction mixture was stirred at the same temperature for 1 h. A solution of dimethyl ester 15 (6.78 g, 31.7 mmol, 1 equiv) in CH2Cl2 (60 mL) was then added dropwise to the reaction mixture which was then allowed to warm to r.t. and stirred overnight. A saturated solution of Rochelle salt was added and the mixture was extracted with CH2Cl2 (3 ×). The combined organic layers were washed with brine, dried with MgSO4 and filtered. The solvent was removed in vacuo and the crude product was purified by flash column chromatography (heptane–EtOAc, 1:0 up to 1:3) to give the pure Weinreb monoamide 16 as a yellow oil (6.78 g, 88%); Rf 0.10 (heptane–EtOAc, 1:1). IR: 3395, 2949, 1716, 1651, 1435, 1274, 1220, 1131, 1046 cm–1. 1H NMR (360 MHz, CDCl3): δ = 4.42 (br d, J = 6.8 Hz, 1 H), 4.28 (br d, J = 8.2 Hz, 1 H), 3.80 (s, 3 H), 3.71 (s, 3 H), 3.22 (s, 3 H), 2.26 (br dd, J = 14.5, 7.7 Hz, 1 H), 2.22 (d, J = 1.4 Hz, 3 H), 1.72 (d, J = 14.1 Hz, 1 H). 13C NMR (90.6 MHz, CDCl3; DEPT): δ = 176.6, 166.1, 159.4, 128.6, 81.0 (+), 61.9 (+), 51.7 (+), 45.1 (+), 36.6 (–), 32.8 (+), 14.6 (+). HRMS (ESI): m/z [M + Na]+ calcd for [C11H17NO5 + Na]: 266.1004; found: 266.0999.
  • 19 For an example, see: Bartoli G, Belluci MC, Bosco M, Marcantoni E, Sambri L. Chem. Eur. J. 1998; 4: 2154
  • 20 Spletstoser JT, White JM, Tunoori AR, Georg GI. J. Am. Chem. Soc. 2007; 129: 3408
  • 21 To avoid epimerization of 18 at C-1, column chromatography separations were performed on commercial pH 7 neutralized silica Chromagel (SDS silica 60 AC.C 70–200 μm).
  • 22 Due to the low cost and the easy removal of butanedione by rotary evaporation, the need for a high excess of this reactant is not insuperable for practical scale-up of the procedure.