Synlett 2014; 25(15): 2127-2132
DOI: 10.1055/s-0034-1378524
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis, Photophysical, Electrochemical Properties and Charge-Transfer Complexation Studies of Piperazinophanes

Ayyavu Thirunarayanan
Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India   Fax: +91(44)22300488   Email: perumalrajakumar@gmail.com
,
Perumal Rajakumar*
Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India   Fax: +91(44)22300488   Email: perumalrajakumar@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 16 April 2014

Accepted after revision: 20 June 2014

Publication Date:
06 August 2014 (online)


Abstract

Several 1:1 and 2:2 oligomeric forms of piperazinophanes with oxa–aza intraannular functionalities and containing various bicyclic ring systems as spacer units were prepared by a one-pot method under simple and mild conditions through a multicomponent reaction strategy involving a Mannich reaction. All the piperazinophanes exhibited absorption maxima in the range 242–356 nm and emission bands between 432 and 501 nm. The photophysical behaviors of the piperazinophanes and their binding properties for 7,7,8,8-tetracyanoquinodimethane, ethylene-1,1,2,2-tetracarbonitrile, and paraquat were examined.

Supporting Information

 
  • References and Notes

  • 1 Lehn J.-M. Science 1985; 227: 849
  • 2 Schneider H.-J. Angew. Chem. Int. Ed. 2009; 48: 3924
  • 3 Bhasikuttan AC, Pal H, Mohanty J. Chem. Commun. 2011; 47: 9959
  • 4 Frampton MJ, Anderson HL. Angew. Chem. Int. Ed. 2007; 46: 1028
    • 5a Gokel GW, Leevy WM, Weber ME. Chem. Rev. 2004; 104: 2723
    • 5b Dsouza RN, Pischel U, Nau WM. Chem. Rev. 2011; 111: 7941
    • 5c Raymo FM, Stoddart JF. Chem. Rev. 1999; 99: 1643
    • 6a Pluth MD, Bergman RG, Raymond KN. Science 2007; 316: 85
    • 6b Singleton ML, Reibenspies JH, Darensbourg MY. A. J. Am. Chem. Soc. 2010; 132: 8870
  • 7 Ko YH, Kim E, Hwang I, Kim K. Chem. Commun. 2007; 1305
  • 8 Mohanty J, Nau WM. Angew. Chem. Int. Ed. 2005; 44: 3750
    • 9a Ghale G, Ramalingam V, Urbach AR, Nau WM. J. Am. Chem. Soc. 2011; 133: 7528
    • 9b Florea M, Nau WM. Org. Biomol. Chem. 2010; 8: 1033
    • 10a Jeon YJ, Kim S.-Y, Ko YH, Sakamoto S, Yamaguchi K, Kim K. Org. Biomol. Chem. 2005; 3: 2122
    • 10b Comprehensive Supramolecular Chemistry . Vol. 3. Atwood JL, Davies JE. D, MacNicol DD, Vögtle F. Elsevier; Oxford: 1996
  • 11 Dutta Choudhury S, Mohanty J, Pal H, Bhasikuttan AC. J. Am. Chem. Soc. 2010; 132: 1395
    • 12a Ramasubbu A, Wainwright KP. J. Chem. Soc., Chem. Commun. 1982; 277
    • 12b Hancock RD, Dobson SM, Evers A, Wade PW, Ngwenya MP, Boeyens JC. A, Wainwright KP. J. Am. Chem. Soc. 1988; 110: 2788
    • 12c Li YJ, Murase I, Reibenspies J, Martell AE. Inorg. Chim. Acta 1996; 246: 89
    • 13a Love CS, Chechik V, Smith DK, Wilson K, Ashworth I, Brennan C. Chem. Commun. 2005; 1971
    • 13b Vemula PK, John G. Chem. Commun. 2006; 2218
    • 14a Claude S, Lehn J.-M, Schmidt F, Vigneron JP. J. Chem. Soc., Chem. Commun. 1991; 1182 ; corrigendum: J. Chem. Soc., Chem. Commun. 1991, 1656
    • 14b Čudić P, Žinić M, Tomišić V, Simeon V, Vigneron J.-P, Lehn J.-M. J. Chem. Soc., Chem. Commun. 1995; 1073
    • 14c Colquhoun HM, Greenland BW, Zhu Z, Shaw JS, Cardin CJ, Burattini S, Elliott JM, Basu S, Gasa TB, Stoddart JF. Org. Lett. 2009; 11: 5238
    • 15a MacDonald M.-A, Puddephatt RJ. Organometallics 2000; 19: 2194
    • 15b Yan Y, Martens AA, Besseling NA. M, de Wolf FA, de Keizer A, Drechsler M, Cohen Stuart MA. Angew. Chem. Int. Ed. 2008; 47: 4192
    • 16a Inouye M, Fujimoto K, Furusyo M, Nakazumi H. J. Am. Chem. Soc. 1999; 121: 1452
    • 16b Abe H, Mawatari Y, Teraoka H, Fujimoto K, Inouye M. J. Org. Chem. 2004; 69: 495
    • 17a Bencini A, Bianchi A, Garcia-Espana E, Mangani S, Micheloni M, Orioli P, Paoletti P. Inorg. Chem. 1988; 27: 1104
    • 17b Menif R, Martell AE. J. Chem. Soc., Chem. Commun. 1989; 1521
  • 18 Lehn J.-M. Angew. Chem. 1988; 100: 91 ; Angew. Chem., Int. Ed. Engl. 1988, 27, 90
    • 19a Hosseini MW, Lehn J.-M. Helv. Chim. Acta 1986; 69: 587
    • 19b Lehn J.-M. Science 1985; 227: 849
    • 19c Pierre JL, Baret P. Bull. Soc. Chim. Fr. 1983; 2: 367
    • 19d Angelovski G, Costisella B, Kolarić B, Engelhard M, Eilbracht P. J. Org. Chem. 2004; 69: 5290
  • 20 Kimura E, Kuramoto Y, Koike T, Fijioka H, Kodama M. J. Org. Chem. 1990; 55: 42
    • 21a Piepenbrock MM.-O, Lloyd GO, Clarke N, Steed JW. Chem. Rev. 2010; 110: 1960
    • 21b Raatikainen K, Rissanen K. Cryst. Growth Des. 2010; 10: 3638
    • 22a Valks GC, McRobbie G, Lewis EA, Hubin TJ, Hunter TM, Sadler PJ, Pannecouque C, De Clercq E, Archibald SJ. J. Med. Chem. 2006; 49: 6162
    • 22b Balakrishna MS, Suresh D, Rai A, Mague JT, Panda D. Inorg. Chem. 2010; 49: 8790
    • 22c William AD, Lee AC.-H, Blanchard S, Poulsen A, Teo E, Nagaraj H, Tan E, Chen D, Williams M, Sun ET, Goh KC, Ong WC, Goh SK, Hart S, Jayaraman R, Pasha MK, Ethirajulu K, Wood JM, Dymock BW. J. Med. Chem. 2011; 54: 4638
    • 23a Boiocchi M, Bonizzoni M, Fabbrizzi L, Foti F, Licchelli M, Poggi A, Taglietti A, Zema M. Chem. Eur. J. 2004; 10: 3209
    • 23b Angelovski G, Costisella B, Kolarić B, Engelhard M, Eilbracht P. J. Org. Chem. 2004; 69: 5290
    • 23c Grote Z, Scopelliti R, Severin K. J. Am. Chem. Soc. 2004; 126: 16959
    • 23d Punji B, Mague JT, Balakrishna MS. Inorg. Chem. 2006; 45: 9454
    • 23e Grote Z, Bonazzi S, Scopelliti R, Severin K. J. Am. Chem. Soc. 2006; 128: 10382
    • 23f Nolan EM, Lippard SJ. Chem. Rev. 2008; 108: 3443
    • 23g Raatikainen K, Beyeh NK, Rissanen K. Chem. Eur. J. 2010; 16: 14554
    • 24a Bariwal JB, Ermolat’ev DS, Van der Eycken EV. Chem. Eur. J. 2010; 16: 3281
    • 24b Multicomponent Reactions . Zhu JP, Bienaymé H. Wiley-VCH; Weinheim: 2005
    • 24c Ramón DJ, Yus M. Angew. Chem. Int. Ed. 2005; 44: 1602
    • 24d Simon C, Constantieux T, Rodriguez J. Eur. J. Org. Chem. 2004; 4957
    • 24e Pang T, Yang Q, Gao M, Wang M, Wu A. Synlett 2011; 3046
    • 24f Wei C, Li Z, Li C.-J. Synlett 2004; 1472
    • 24g Zani L, Bolm C. Chem. Commun. 2006; 4263
    • 24h Li C.-J. Acc. Chem. Res. 2010; 43: 581
    • 24i Yoo W.-J, Zhao L, Li C.-J. Aldrichimica Acta 2011; 44: 43
    • 25a Elizarov AM, Chang T, Chiu SH, Stoddart JF. Org. Lett. 2002; 4: 3565
    • 25b Miljanić OŠ, Dichtel WR, Mortezaei S, Stoddart JF. Org. Lett. 2006; 8: 4835
    • 25c Miljanić OŠ, Dichtel WR, Khan SI, Mortezaei S, Heath JR, Stoddart JF. J. Am. Chem. Soc. 2007; 129: 8236
    • 25d Leung C.-FK, Aricó F, Cantrill SJ, Stoddart JF. Macromolecules 2007; 40: 3951
    • 25e Spruell JM, Paxton WF, Olsen JC, Benítez D, Tkatchouk E, Stern CL, Trabolsi A, Friedman DC, Goddard WA. III, Stoddart JF. J. Am. Chem. Soc. 2009; 131: 11571
    • 25f Fang L, Basu S, Sue C.-H, Fahrenbach AC, Stoddart JF. J. Am. Chem. Soc. 2011; 133: 396
    • 26a Rajakumar P, Murali V. Tetrahedron Lett. 2002; 43: 7695
    • 26b Rajakumar P, Kanagalatha R. Tetrahedron Lett. 2007; 48: 2761
    • 26c Rajakumar P, Visalakshi K. Supramol. Chem. 2009; 21: 674
  • 27 Precyclophane Diynes 13–16; General Procedure A mixture of the appropriate dihydroxy compound 912 (0.5 g, 3.1 mmol), HC≡CCH2Br (0.61 mL 6.86 mmol), and K2CO3 (2.15 g 15.6 mmol) in DMF (15 mL) was stirred for 48 h at r.t. When the reaction was complete, the mixture was poured into H2O and extracted with CHCl3 (3 × 100 mL). The organic phases were combined, washed with brine (2 × 50 mL), dried (Na2SO4), and filtered. The solvent was evaporated in vacuo and the residue was purified by column chromatography [silica gel CHCl3–MeOH (9:1)]. 2,7-Bis(prop-2-yn-1-yloxy)naphthalene (13) Prepared from naphthalene-2,7-diol (9; 0.5 g, 3.1 mmol) as a white solid; yield: 0.41 g (82%); mp 194 °C; 1H NMR (300 MHz, CDCl3): δ = 2.56 (t, J = 2.4 Hz, 2 H); 4.79 (d, J = 2.1 Hz, 4 H); 7.04–7.07 (m, 4 H); 7.46 (d, J = 2.1 Hz, 2 H); 13C NMR (75 MHz, CDCl3): δ = 55.8, 75.7, 78.5, 107.0, 116.6, 125.1, 129.4, 135.4, 156.2; ESI-MS: m/z = 236 [M+]; Anal. Calcd for C16H12O2: C, 81.34; H, 5.12. Found: C, 81.43; H, 5.06. Piperazinophanes 16 A mixture of precyclophane diyne 13–16 (0.2 g, 3.98 mmol), piperazine (0.04 g, 3.98 mmol), HCHO (0.02 g, 7.96 mmol from 37–41% formalin solution), and CuCl (0.04 g, 3.98 mmol) in 1,4-dioxane (30 mL) was heated to 90 °C under N2 for 2 h. When the reaction was complete, the solvent was removed under reduced pressure. The residue was extracted with CHCl3 (3 × 100 mL), washed with H2O (2 × 100 mL) and brine (150 mL), and dried (Na2SO4). The solvent was removed and the crude product was purified by column chromatography [silica gel, CHCl3–MeOH (24:1)]. 2,15-Dioxa-7,10-diazatetracyclo[14,5,3,27,10,019,23]-hexacosa-1(22),16(24),17,19(23),20-pentaene-4,12-diyne (1) Prepared from diyne 13 (0.3 g, 1.27 mmol) as a white solid; yield: 31%; mp 160 °C (dec); 1H NMR: (300 MHz, CDCl3): δ = 2.51 (s, 8 H); 3.26 (s, 4 H); 4.86 (s, 4 H); 7.00–7.04 (m, 2 H); 7.47 (s, 2 H); 7.67 (d, J = 8.7 Hz, 2 H); 13C NMR: (75 MHz, CDCl3): δ = 46.8, 51.4, 56.2, 80.8, 84.3, 107.9, 117.7, 125.1, 129.2, 135.4, 156.1; ESI-MS: m/z = 346 [M+]; Anal. Calcd for C22H22N2O2: C, 76.28; N, 6.40; H, 8.09%. Found: C, 76.19; N, 6.36; H, 7.97%.
  • 28 Benesi HA, Hildebrand JH. J. Am. Chem. Soc. 1949; 71: 2703