Applications of Allenylsilanes in Organic Synthesis

Compiled by Sharada Prasanna Swain

Sharada Prasanna Swain was born in Bhirang, Orissa, India. In 2004, he received his M. Pharm from Manipal University, India. He then joined Torrent Pharmaceutical Ltd., India and attended in 2007 the doctoral program at the National Tsing Hua University, Hsinchu, Taiwan under the supervision of Prof. Dr. Jih Ru Hwu. Currently, he is working as a postdoctoral fellow at the National Central University, Zhongli, Taiwan. His current research involves the development of new synthtic methods and synthesis of novel anticancer agents.

Department of Chemistry, National Tsing Hua University, Hsinchu
30013, Taiwan
E-mail: d9623889@oz.nthu.edu.tw

Introduction

Allenylsilanes are versatile reagents widely used in organic synthesis. Generally, allenylsilanes react as propargyl anion equivalents in Lewis acid mediated or thermal nucleophilic addition to electrophiles such as carbonyls, imines, Selectfluor, and N-bromosuccinimide, etc. The regiospecific addition of allenylsilanes provides a β-vinyl cation, which is stabilized by a C–Si bond, which is called β effect. The C–Si bond in allenylsilanes is oriented cis-coplanar to the p-orbital of the carbocation and provides direct stabilization. Allenylsilanes undergo [3+2] annulations with α,β-unsaturated carbonyls, carbonyl compounds, imines, and nitrosyl cations to form cyclopentenones, dihydrofurans, dihydropyrroles, and isoxazoles, respectively.

The efficient methods for the synthesis of allenylsilanes are copper-mediated 1,3-substitution reactions of carbon nucleophiles to propargylic substrates having a leaving group at the propargylic position.

Scheme 1 Synthesis of allenylsilanes

Abstracts

(A) Reactions with Aldehydes: Allenylsilanes react with aldehydes and ketones in the presence of titanium tetrachloride to provide homopropargylic alcohols in a regioselective manner. The reaction of chiral allenylsilanes with chiral aldehydes leads to the formation of mainly syn homopropargylic alcohols. The reaction of chiral 3,3-disubstituted allenylsilane with paraformaldehyde in the presence of TiCl₄·2THF generates chiral homopropargylic alcohol, which is the key intermediate in the total synthesis of (-)-histrionicotoxin.

(B) Reactions with Aldehydes: The reaction of chiral 2-silyl-substituted α-allenic alcohol with aldehyde in the presence of InBr₃ gives rise to chiral homopropargylic alcohol. The reaction proceeds via formation of oxocarbenium ion, which undergoes a [3,3]-sigmatropic rearrangement to form the alcohol. The alcohol is the key intermediate in the total synthesis of the natural product (+)-neopeltolide.
OH
R2
H2N
H2N
R2
Silane

Reagents for Silicon-Mediated Organic Synthesis

Org. Lett.

J. Am. Chem. Soc.

Chem. Soc.

Angew. Chem. Int. Ed.

Chem. Rev.

2014, 25, 2085–2086

S. P. Swain

\[\text{Reactions with Aldehydes: The addition of \(\gamma \)-trimethylsilyl allene esters 13 to aldehydes 14 in the presence of \(\text{i-ProLi} \) leads to the formation of regiospecific \(\gamma \)-carbinols 18. The addition of anionic catalyst \(\text{i-ProLi} \) leads to the intermediate 15, which possess enolate-like reactivity. The nucleophilic addition of intermediate 15 to aldehyde 14 generates intermediate 16. Then, the silyl group undergoes a 1,3-shift and the nucleophile eliminates to form the intermediate 17. This reaction is the key step in the total synthesis of the [3.2.1] bicyclic natural product vitisinol D.}\]

\[\text{D) Reactions with Imines: The enantioenriched allenylsilane 20 reacts with the in situ generated iminium ion generated from benzynes with terminal alkynes leads to 4-alkylidene-2-cyclopenten-1-ones in three-membered iron metacycle is generated by reaction of allenylsilanes:}

\[\text{E) Gold-Catalyzed Cycloisomerization: In the presence of AuCl₃ the \(\gamma \)-silyl-substituted allenyl ketones 29 undergoes cycloisomerization to 3-silyl furans 32. The cyclization of the allenyl ketone 29 give rise to the intermediate gold-carbene 31, and upon the 1,2-Si shift, the 3-silyl furan 32 is produced.}\]

\[\text{F) The Pauson–Khand Reaction of 1,1-Disubstituted Allenylsilanes: The Pauson–Khand reaction of 1,1-disubstituted allenylsilanes with terminal alkynes leads to 4-alkylidene-2-cyclopenten-1-ones in good yields. The reaction proceeds through a \([2+2+1]\) pathway. A three-membered iron metacycle is generated by reaction of allenylsilane 33 with diiron nonacarbonyl. The iron metacycle undergoes complexation with alkyne 34, and finally, a reductive elimination takes place to provide the 4-alkylidene-2-cyclopenten-1-one 35.}\]

\[\text{G) [2+2+2] Cycloaddition with Benzynes: Benzynes possess a strained triple bond and are highly electrophilic. Allenylsilanes 37 react with two equivalents of benzynes 36 to generate \(\alpha \)-phenantherenylvinylsilanes 38 in excellent yields. The reaction proceeds through a \([2+2+2]\) pathway.}\]

References