Spotlight

This feature focuses on a reagent chosen by a postgraduate, highlighting the uses and preparation of the reagent in current research.

New Uses for Indium(III) Chloride

Compiled by Rosana Helena C. N. Freitas

Rosana Freitas was born in 1988 in Rio Grande do Sul, Brazil. She received her B.Sc. in Pharmacy (2011) from Estácio de Sá University (UNESA) and her M.Sc. degree in Chemistry (2013) from Federal University of Rio de Janeiro (UFRJ) under the guidance of Professor Carlos A. Manssour Fraga. She is currently a Ph.D. student under the guidance of Professor Carlos A. Manssour Fraga and Professor Edson F. Silva. Her research focuses on the synthesis and pharmacological evaluation of new prototypes of anti-Trypanosoma cruzi agents.

LASSBio, B16, CCS, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
E-mail: rosanahf@iq.ufrj.br

Introduction

Indium(III) chloride (InCl₃) is an inexpensive, commercially available, easy-to-handle, air- and water-stable Lewis acid with moderate toxicity. It shows a high tolerance to most functional groups including oxygen and nitrogen functionalities. Additionally, InCl₃ is very attractive for green-chemistry reactions due to its recyclability. Therefore, InCl₃ has been described as a catalyst for various reactions, especially multicomponent reactions (MCR), as given below.

Abstracts

(A) Synthesis of Furans:

Dey and co-workers reported a one-pot synthesis of polysubstituted furans (3) using but-2-ene-1,4-diones (1) and acetoacetates (2) under acid catalysis using InCl₃. It is an efficient and easy way of obtaining polysubstituted furans in excellent yields. In a similar manner, Suresh and co-workers reported a synthesis of various pyrroles from α-azido chalcones and 1,3-dicarbonyl compounds using acid catalysis with InCl₃ in water.

(B) Multicomponent Reaction:

A new protocol described a solvent-free, three-component reaction to generate 8,10-dimethyl-12-aryl-12H-naphtho[1′,2′:5,6]pyrano[2,3-d]pyrimidines (7) using functionalized aldehydes (4), 2-naphthol (5), and 6-amino-1,3-dimethyluracil (6) with InCl₃ as catalyst. The synthesis is conducted in the absence of a co-catalyst and the desired compounds were obtained in good yields and lower reaction times. Several other multicomponent reactions using InCl₃ have been described since then.

(C) Nucleophilic Substitution:

Lin and co-workers described a versatile and useful methodology for the synthesis of new C(sp³)–C(sp²), C(sp³)–N, C(sp³)–S and C(sp³)–O bonds via nucleophilic substitution of secondary alkyl-substituted propargyl acetates (8) in MeNO₂ using InCl₃. Over twenty substrates were tested and the substitution products were obtained in high yields.

(D) Barbier–Grignard-type Reaction:

A novel and efficient one-pot synthesis of propargylamines (11) via a Barbier–Grignard-type reaction was described for a variety of aldimines (9) and phenylacetylenes (10) in a bicatalytic system using InCl₃ and CuCl in water. The products were obtained in moderate to good yields, without formation of byproducts or hydrolysis of aldimines.
InCl₃ and Et₃SiH in methanol were able to promote the highly chemoselective reductive amination of various carbonyl compounds. In this methodology, ketones and aldehydes, some of them α,β-unsaturated, and various amines were used, including amines with other functional groups. The proposed mechanism suggests that the reducing agent is formed in situ by a catalytic cycle to generate active indium hydride species [InCl₃(MeOH)ₓ]⁺, which then transfers the hydride to an iminium ion intermediate to generate the corresponding amine.⁹

References

