Synlett 2014; 25(13): 1879-1882
DOI: 10.1055/s-0034-1378323
letter
© Georg Thieme Verlag Stuttgart · New York

Lewis Base Catalyzed Asymmetric Hydrosilylation of α-Substituted β-Enamino Esters: Facile Access to Enantioenriched β2-Amino Esters via Dynamic Kinetic Resolution

Chang Shu
a   Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Fax: +86(28)85257883   Email: xmzhang@cioc.ac.cn
b   Graduate School of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
Xiao-Yan Hu
a   Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Fax: +86(28)85257883   Email: xmzhang@cioc.ac.cn
b   Graduate School of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
Shuai-Shuai Li
a   Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Fax: +86(28)85257883   Email: xmzhang@cioc.ac.cn
b   Graduate School of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
Wei-Cheng Yuan
a   Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Fax: +86(28)85257883   Email: xmzhang@cioc.ac.cn
,
Xiao-Mei Zhang*
a   Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Fax: +86(28)85257883   Email: xmzhang@cioc.ac.cn
› Author Affiliations
Further Information

Publication History

Received: 13 April 2014

Accepted after revision: 19 May 2014

Publication Date:
08 July 2014 (online)


Abstract

A chiral Lewis base organocatalyzed asymmetric hydrosilylation of α-substituted β-enamino esters is presented. The reactions proceeded through dynamic kinetic resolution to afford various enantioenriched β2-amino esters with high yields (up to 98%) in moderate enantioselectivities (up to 77% ee).

Supporting Information

 
  • References and Notes

    • 1a Seebach D, Beck AK, Capone S, Deniau G, Groselj U, Zass E. Synthesis 2009; 1
    • 1b Seebach D, Gardiner J. Acc. Chem. Res. 2008; 41: 1366
    • 1c Lelais G, Seebach D. Biopolymers 2004; 76: 206
    • 1d Cheng RP, Gellman SH, DeGrado WF. Chem. Rev. 2001; 101: 3219
    • 1e Subbaraju GV, Golakoti T, Patterson GM. L, Moore RE. J. Nat. Prod. 1997; 60: 302
    • 1f Chaganty S, Heltzel C, Golakoti T, Moore RE, Yoshida WY. J. Nat. Prod. 2004; 67: 1403
    • 1g Seebach D, Kimmerlin T, Šebesta R, Campo MA, Beck AK. Tetrahedron 2004; 60: 7455

      For reviews, see:
    • 2a Sewald N. Angew. Chem. Int. Ed. 2003; 42: 5794
    • 2b Weiner B, Szymanski W, Janssen DB, Minnaard AJ, Feringa BL. Chem. Soc. Rev. 2010; 39: 1656
    • 3a Duursma A, Minnaard AJ, Feringa BL. J. Am. Chem. Soc. 2003; 125: 3700
    • 3b Sammis GM, Jacobsen EN. J. Am. Chem. Soc. 2003; 125: 4442
    • 3c Wang J, Li H, Duan W, Zu L, Wang W. Org. Lett. 2005; 7: 4713
    • 3d Lee HS, Park JS, Kim BM, Gellman SH. J. Org. Chem. 2003; 68: 1575
    • 3e Lin L, Yin W, Fu X, Zhang JL, Ma XJ, Wang R. Org. Biomol. Chem. 2012; 10: 83
  • 4 Davies HM. L, Venkataramani C. Angew. Chem. Int. Ed. 2002; 41: 2197
    • 5a Martin NJ. A, Cheng X, List B. J. Am. Chem. Soc. 2008; 130: 13862
    • 5b Sibi MP, Patil K. Angew. Chem. Int. Ed. 2004; 43: 1235
    • 6a Elaridi J, Thaqi A, Prosser A, Jackson WR, Robinson AJ. Tetrahedron: Asymmetry 2005; 16: 1309
    • 6b Huang H, Liu X, Deng J, Qiu M, Zheng Z. Org. Lett. 2006; 8: 3359
    • 6c Qiu L, Prashad M, Hu B, Prasad K, Repič O, Blacklock TJ, Kwong FY, Kok SH. L, Lee HW, Chan AS. C. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 16787
    • 6d Deng J, Hu X, Huang J, Yu S, Wang D, Duan Z, Zheng Z. J. Org. Chem. 2008; 73: 2015
    • 6e Hoen R, Tiemersma-Wegman T, Procuranti B, Lefort L, Vries JG. D, Minnaard AJ, Feringa BL. Org. Biomol. Chem. 2007; 5: 267
    • 6f Li LN, Chen B, Ke YY, Li Q, Zhuang Y, Duan K, Huang YC, Pang JY, Qiu LQ. Chem. Asian J. 2013; 8: 2167
    • 6g Luhr S, Holz J, Zayas O, Seidelmann O, Domke L, Borner A. Tetrahedron: Asymmetry 2013; 24: 395

      For selected examples, see:
    • 7a Chi YG, English EP, Pomerantz WC, Horne WS, Joyce LA, Alexander LR, Fleming WS, Hopkins EA, Gellman SH. J. Am. Chem. Soc. 2007; 129: 6050
    • 7b Chi YG. Gellman S. H. J. Am. Chem. Soc. 2006; 128: 6804
    • 7c Sibi MP, Tatamidani H, Patil K. Org. Lett. 2005; 7: 2571
    • 7d Beddow JE, Davies SG, Ling KB, Roberts PM, Russell AJ, Smith AD, Thomson JE. Org. Biomol. Chem. 2007; 5: 2812

      For reviews on Lewis base catalysis and Lewis base catalytic asymmetric hydrosilylations of C=N double bonds, see:
    • 8a Rendler S, Oestreich M. Synthesis 2005; 1727
    • 8b Orito Y, Nakajima M. Synthesis 2006; 1391
    • 8c Denmark SE, Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560 ; Angew. Chem. 2008, 120, 1584
    • 8d Kočovský P, Malkov AV. Chiral Lewis Bases as Catalysts . In Enantioselective Organocatalysis . Dalko PI. Wiley-VCH; Weinheim: 2007: 255
    • 8e Kagan HB. Organocatalytic Enantioselective Reduction of Olefins, Ketones and Imines. In Enantioselective Organocatalysis. Dalko PI. Wiley-VCH; Weinheim: 2007: 391
    • 8f Jones S, Warner CJ. A. Org. Biomol. Chem. 2012; 10: 2189
    • 8g Guizzetti S, Benaglia M. Eur. J. Org. Chem. 2010; 5529
    • 8h Weickgenannt A, Oestreich M. ChemCatChem 2011; 3: 1527

      For representative examples, see:
    • 9a Malkov AV, Stewart-Liddon AJ. P, McGeoch GD, Ramirez-Lopez P, Kočovský P. Org. Biomol. Chem. 2012; 10: 4864
    • 9b Malkov AV, Stončius S, Vranková K, Arndt M, Kočovský P. Chem. Eur. J. 2008; 14: 8082
    • 9c Malkov AV, Stončius S, Kočovský P. Angew. Chem. Int. Ed. 2007; 46: 3722
    • 9d Malkov AV, Liddon AJ. P. S, Ramirez-Lopez P, Bendova L, Haigh D, Kočovský P. Angew. Chem. Int. Ed. 2006; 45: 1432
    • 9e Wang ZY, Wang C, Zhou L, Sun J. Org. Biomol. Chem. 2013; 11: 787
    • 9f Liu XW, Yan Y, Wang YQ, Wang C, Sun J. Chem. Eur. J. 2012; 18: 9204
    • 9g Xiao YC, Wang C, Yao Y, Sun J, Chen YC. Angew. Chem. Int. Ed. 2011; 50: 10661
    • 9h Wu XJ, Li Y, Wang C, Zhou L, Lu XX, Sun J. Chem. Eur. J. 2011; 17: 2846
    • 9i Onomura O, Kouchi Y, Iwasaki F, Matsumura Y. Tetrahedron Lett. 2006; 47: 3751
    • 9j Genoni A, Benaglia M, Massolo E, Rossi S. Chem. Commun. 2013; 49: 8365
    • 9k Guizzetti S, Benaglia M, Bonsignore M, Raimondi L. Org. Biomol. Chem. 2011; 9: 739
    • 9l Guizzetti S, Benaglia M, Rossi S. Org. Lett. 2009; 11: 2928
    • 9m Sugiura M, Kumahara M, Nakajima M. Chem. Commun. 2009; 3585
    • 9n Jones S, Zhao PC. Tetrahedron: Asymmetry 2014; 25: 238
    • 9o Jones S, Li XF. Tetrahedron 2012; 68: 5522
    • 9p Kashiwagi T, Kotani S, Nakajima M, Sugiura M. Tetrahedron Lett. 2014; 55: 1924
    • 9q Jiang Y, Chen X, Hu XY, Shu C, Zhang YH, Zheng YS, Lian CX, Yuan WC, Zhang XM. Adv. Synth. Catal. 2013; 355: 1931
    • 9r Chen X, Hu XY, Shu C, Zhang YH, Zheng YS, Jiang Y, Yuan WC, Liu B, Zhang XM. Org. Biomol. Chem. 2013; 11: 3089
    • 9s Jiang Y, Chen X, Zheng YS, Xue ZY, Shu C, Yuan WC, Zhang XM. Angew. Chem. Int. Ed. 2011; 50: 7304
    • 9t Zheng HJ, Chen WB, Wu ZJ, Deng JG, Lin WQ, Yuan WC, Zhang XM. Chem. Eur. J. 2008; 14: 9864

      For reviews on DKR, see:
    • 10a Zhang BL, Qin W, Duan YC, Yu B, Zhang E, Liu HM. Chin. J. Org. Chem. 2012; 32: 1359
    • 10b Pellissier H. Tetrahedron 2011; 67: 3769
    • 10c Pellissier H. Adv. Synth. Catal. 2011; 353: 659
    • 10d Zhang ZH, Liu QB. Chin. J. Org. Chem. 2005; 25: 780

      For recent selected examples, see:
    • 11a Shen X, Miao WJ, Ni CF, Hu JB. Angew. Chem. Int. Ed. 2014; 53: 775
    • 11b Nikitin K, Rajendran KV, Müller-Bunz H, Gilheany DG. Angew. Chem. Int. Ed. 2014; 53: 1906
    • 11c Dornan PK, Kou KG. M, Houk KN, Dong VM. J. Am. Chem. Soc. 2014; 136: 291
    • 11d Yang W, Yang Y, Du DM. Org. Lett. 2013; 15: 1190
    • 11e Metrano AJ, Miller SJ. J. Org. Chem. 2014; 79: 1542
  • 12 Huang LJ, Hsieh MC, Teng CM, Lee KH, Kuo SC. Bioorg. Med. Chem. 1998; 6: 1657
  • 13 General Experimental Procedure for the Enantioselective Hydrosilylation of α-Substituted β-Enamino Esters A solution of trichlorosilane (41 μL, 0.3 mmol, 2.0 equiv) in 160 μL of CH2Cl2 was added to a stirred solution of the corresponding α-substituted β-enamino ester (0.20 mmol) and the catalyst 3i (0.020 mmol) in CH2Cl2 (2.0 mL) at –10 °C. The mixture was stirred at the same temperature until the reaction reached completion. Then the reaction was quenched with a sat. aq solution of NaHCO3 and was extracted with CH2Cl2. The combined organic layer was washed with brine, dried over anhydrous Na2SO4, and the solvents were evaporated. Purification by column chromatography (silica gel; hexane–EtOAc, 10:1) afforded the products. The ee values were determined using established HPLC techniques with chiral stationary phases.
  • 14 Ethyl 2-(3,4-Dimethoxyphenyl)-3-(4-methoxyphenyl-amino)propanoate (2e) Yield 99%; 77% ee; light yellow oil. 1H NMR (300 MHz, CDCl3): δ = 6.76–6.84 (m, 5 H), 6.58 (d, J = 8.8 Hz, 2 H), 4.10–4.19 (m, 2 H), 3.86 (s, 6 H), 3.79–3.83 (m, 1 H), 3.72–3.74 (m, 4 H), 3.59 (br s, 1 H), 1.18–1.28 (m, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 173.0, 152.3, 149.1, 148.4, 141.4, 129.2, 120.3, 114.9, 114.6, 114.3, 110.9, 60.9, 55.8, 55.7, 50.3, 47.9, 14.0 ppm. ESI-HRMS: m/z calcd for [C20H25NO5 + H]+: 360.1811; found: 330.1804. [α]D 20 +112 (c 0.50, CHCl3). AD-H column (n-hexane–2-PrOH, 80:20), flow rate = 1.0 mL/min, t R = 16.7, 17.9 min.